Динамический диапазон значений фиксированной точки является меньше, чем значения с плавающей точкой с эквивалентными размерами слова. Чтобы избежать переполнения и минимизировать ошибки квантования, числа фиксированной точки должны масштабироваться.
С Фиксированной точкой Designer™ можно выбрать тип данных фиксированной точки, масштабирование которого задано его двоичной точкой, или можно выбрать произвольное линейное масштабирование, которое удовлетворяет потребностям.
Можно представлять номер фиксированной точки общим наклоном и сместить схему кодирования. Значение реального мира наклонного смещения масштабировалось, номер может быть представлен:
Наклон и смещение вместе представляют масштабирование номера фиксированной точки. В номере с нулевым смещением только наклон влияет на масштабирование. Номер фиксированной точки, который только масштабируется положением двоичной точки, эквивалентен номеру в наклонном представлении смещения, которое имеет смещение, равное нулю и наклонному поправочному коэффициенту, равному одному. Это упоминается как бинарное масштабирование только для точки или масштабирование степени двойки.
Единственный двоичной точкой или масштабирование степени двойки включает перемещение двоичной точки в слове фиксированной точки. Преимущество этого режима масштабирования должно минимизировать количество арифметических операций процессора. Значение реального мира двоичной точки только масштабировалось, номер может быть представлен:
Точность номера фиксированной точки является различием между последовательными значениями, представимыми его типом данных и масштабированием, которое равно значению его младшего значащего бита. Значение младшего значащего бита, и поэтому точность номера, определяются количеством дробных битов. Значение фиксированной точки может быть представлено в половине точности его типа данных и масштабирования.
Например, представление фиксированной точки с четырьмя битами справа от двоичной точки имеет точность 2-4 или 0.0625, который является значением ее младшего значащего бита. Любой номер в области значений этого типа данных и масштабирования может быть представлен в (2-4)/2 или 0.03125, который является половиной точности.
Когда вы представляете числа с конечной точностью, не, каждый номер в доступной области значений может быть представлен точно. Если номер не может быть представлен точно заданным типом данных и масштабированием, метод округления используется, чтобы бросить значение к представимому номеру. Несмотря на то, что точность всегда теряется в округляющейся операции, стоимость операции и объем смещения, которое представлено, зависят от самого метода округления. Для получения дополнительной информации о методах округления, доступных с Fixed-Point Designer, смотрите Округление Методов (Fixed-Point Designer)
Область значений является промежутком чисел, которые могут представлять тип данных фиксированной точки и масштабирование. Область значений представимых чисел для дополнительного количества фиксированной точки two без знака размера слова ws, масштабируясь S, и смещения B проиллюстрирована ниже:
Следующая фигура иллюстрирует, что область значений представимых чисел для дополнения two подписала номер фиксированной точки:
И для подписанных и для количеств фиксированной точки без знака любого типа данных, количество различных комбинаций двоичных разрядов 2wl.
Например, в дополнении two, отрицательные числа должны быть представлены, а также нуль, таким образом, максимальное значение является 2wl-1-1. Поскольку существует только одно представление для нуля, существует неравное количество положительных и отрицательных чисел. Это означает, что существует представление для — 2wl-1, но не для 2wl-1.