Этот пример сравнивает результаты, опубликованные в [1] для Архимедовой спиральной антенны с теми полученное использование модели тулбокса спиральной антенны. 2D рука Архимедова спиральная антенна (r = R ) может рассматриваться как диполь, руки которого были перенесены в форму Архимедовой спирали. Эта идея прибыла от Эдвина Тернера приблизительно 1 954.
Архимедова спиральная антенна может быть классифицирована как независимая от частоты антенна в том смысле, что ее входной импеданс и усиление остаются почти постоянными в пропускной способности. В низких частотах зона излучения около наиболее удаленной части спирали, между тем в высоких частотах, которые это около центра. Следовательно, самая низкая частота среза спиральной антенны связана со своим внешним радиусом, и самая высокая частота среза связана со своим внутренним радиусом. Это означает, что пропускная способность антенны может быть очень большой, только в зависимости от точности печати и размера. Ниже размерности спирали, данной в [1] в метрах.
Ro = 50e-3; Ri = 5.5e-3; turns = 4;
Создайте Архимедову спиральную антенну с помощью заданных параметров.
sp = spiralArchimedean('Turns',turns,'InnerRadius',Ri,'OuterRadius',Ro); figure; show(sp);
Поведение импеданса спиральной антенны показывает несколько резонансов в низкочастотной полосе, прежде, чем достигнуть относительно постоянного сопротивления и поведения реактивного сопротивления. Чтобы получить эти резонансы, мы разделяем целый диапазон частот в два поддиапазона. В более низком диапазоне частот мы выбираем с более прекрасным интервалом, в то время как на более высоких частотах мы выбираем более грубый интервал.
Nf1 = 20; Nf2 = 6; fband1 = linspace(0.8e9,1.4e9,Nf1); fband2 = linspace(1.4e9,2.5e9,Nf2); freq = unique([fband1,fband2]); figure; impedance(sp, freq);
Входной импеданс этой спиральной антенны может быть получен с помощью расширения Бухгалтером принципа Бэбинета для дополнительных структур [2]. Для антенны в свободном пространстве его входной импеданс равняется 60 = 188.5 . Это значение очень близко к значению импеданса, наблюдаемого на более высоких частотах в графике, замеченном выше. Отражательный коэффициент вычисляется с помощью ссылочного импеданса 188 . Из графика ниже его замечен, что существующая антенна хорошо соответствующая для частот выше, чем 1,1 ГГц.
S = sparameters(sp, freq, 188);
figure; rfplot(S);
title('Reflection Coefficient');
Эта совпадающая частота выше, чем аппроксимированный теоретический результат 0,96 GHz [1], поскольку ток все еще достигает спиральных советов, как замечено в вычислительной фигуре, которая следует.
Поверхностное распределение тока в низких частотах:
figure; current(sp, 0.85e9); view(0,90);
На более высоких частотах, поверхностное текущее затухание прежде, чем достигнуть спиральных советов. Это приводит к лучшему соответствию.
figure; current(sp, 1.9e9); view(0,90);
Распределение тока представляет осевую симметрию на 180 градусов, которая производит циркулярную поляризованную излученную волну. График ниже показов коэффициент эллиптичности в развороте спиральной антенны. Заметьте, что спиральная антенна достигает хорошей круговой поляризации для частот выше, чем 1,4 ГГц.
freq = 0.8e9:100e6:2.5e9; AR = zeros(size(freq)); for m=1:numel(freq) AR(m) = axialRatio(sp, freq(m), 0, 90); end figure; plot(freq, AR); grid on; axis([0.8e9 2.5e9 0 10]); xlabel('Frequency (Hz)'); ylabel('Axial ratio (dB)'); title('Axial Ratio of Archimedean Spiral Antenna at Boresight');
Тезис [1] проекты Архимедова спиральная антенна и сравнивает свою производительность с теоретическими результатами, а также с коммерчески доступными решателями EM. Результаты получили использование соответствия Antenna Toolbox™ очень хорошо с результатами, представленными в [1].
[1] Исраэль Хиностроза, "Большой Conception de reseaux отравил d'antennes спирали", Другой, Supelec, 2013, стр 58-62. Онлайн в: http://tel.archives-ouvertes.fr/file/index/docid/830469/filename/Hinostroza_Israel_final_final_thesis_2013.pdf
[2] К. А. Баланис, теория антенны. Анализ и проектирование, Вайли, Нью-Йорк, 3-й выпуск, 2005.