Планирование 5G фиксированная ссылка беспроводного доступа по ландшафту

Этот пример показывает, как запланировать ссылку фиксированного беспроводного доступа (FWA) по ландшафту с помощью технологий 5G. FWA является вариантом использования для 5G, чтобы включить широкополосные услуги в дома или предприятия, где услуги проводной связи или недоступны или неблагополучны. FWA соединяет базовую станцию с фиксированным беспроводным терминалом (FWT) пользователя [1]. В высоких частотах, требуемых для 5G, ландшафт и нарушения пути потерь как листва и погода играют важную роль в определении успеха ссылки.

Пример создает базовую станцию и несколько сайтов получателя в пригородной среде, располагая антенны, чтобы достигнуть видимости угла обзора по промежуточному ландшафту. Многопользовательское несколько - вход, несколько - выводят (MU-MIMO), система с антеннами с высоким коэффициентом усиления разработана с помощью Antenna Toolbox™ и Phased Array System Toolbox™. Сила сигнала на сайтах получателя оценена для двух частот в присутствии нарушений пути потерь.

Создайте сайт базовой станции в полосе на 28 ГГц

Создайте ретранслятор на Южной горе Анкэнунук в Гоффстауне, Нью-Гэмпшире, США. Гора является родиной нескольких средств передачи, которые служат области. Задайте ретранслятор, чтобы представлять передачу базовой станции на уровне 28 ГГц с 1 ваттом мощности. Покажите сайт в Средстве просмотра Сайта и вращайте представление, чтобы визуализировать сайт с окружающим ландшафтом.

fq = 28e9; % 28 GHz

tx = txsite("Name","South Uncanoonuc (BS)", ...
    "Latitude",42.983723, ...
    "Longitude",-71.587173, ...
    "TransmitterPower",1, ...
    "TransmitterFrequency",fq);
show(tx)

Создайте сайты получателя

Создайте три сайта получателя в области и покажите сайты на карте. Каждый сайт получателя представляет сайт, куда фиксированный беспроводной терминал пользователя помещается.

rxBedford = rxsite("Name","Bedford Town Center", ...
    "Latitude",42.946193, ...
    "Longitude",-71.516234);

rxStA = rxsite("Name","St. Anselm College", ...
    "Latitude",42.987386, ...
    "Longitude",-71.507475);

rxGPD = rxsite("Name","Goffstown Police Dept", ...
    "Latitude",43.009335, ...
    "Longitude",-71.539083);

rxs = [rxBedford, rxStA, rxGPD];
show(rxs)

Достигните видимости ссылки угла обзора

Проблема для коммуникации 5G достигает успешной ссылки в присутствии ландшафта и других препятствий, начиная с увеличения распространения потерь в высокой частоте. Видимый путь угла обзора требуется для оптимальных условий распространения. В пригородной среде, рассмотренной здесь, ландшафт является доминирующим препятствием достижению видимости угла обзора. Постройте пути к распространению угла обзора между сайтами получателя и базовой станцией. Вычисление угла обзора включает ландшафт, но никакие другие препятствия и не показывают затрудненный угол обзора с двумя из трех сайтов получателя.

los(tx,rxs)

Регулируйте высоты антенны в порядке достигнуть видимости угла обзора.

% Place antennas on structures at receiver sites. Assume 6 m utility poles for Bedford
% and St. Anselm sites, and 15 m antenna pole at Goffstown Police Department.
rxBedford.AntennaHeight = 6;
rxStA.AntennaHeight = 6;
rxGPD.AntennaHeight = 15;

% Increase height of antenna at base station until line-of-sight is achieved with all receiver sites
tx.AntennaHeight = 10;
while ~all(los(tx,rxs))
    tx.AntennaHeight = tx.AntennaHeight + 5;
end

% Display line-of-sight
los(tx,rxs)
disp("Antenna height required for line-of-sight: " + tx.AntennaHeight + " m")
Antenna height required for line-of-sight: 70 m

Создайте 8 12 антенную решетку базовой станции

Разработайте 8 12 антенную решетку пересеченных дипольных элементов антенны, чтобы сгенерировать высоко направляющий луч. Эта система реализует MU-MIMO [1] использования концепции 5G. Постройте диаграмму направленности на карте, с помощью ориентации антенны по умолчанию так, чтобы антенная решетка была физически ориентирована в восточном направлении.

% Design reflector-backed crossed dipole antenna
txElement = reflectorCrossedDipoleElement(fq);

% Define array size
ntxrow = 8;
ntxcol = 12;

% Define element spacing
lambda = physconst("lightspeed")/fq;
drow = lambda/2;
dcol = lambda/2;

% Create 8-by-12 antenna array
tx.Antenna = phased.URA("Size",[ntxrow ntxcol], ...
    "Element",txElement, ...
    "ElementSpacing",[drow dcol]);

% Plot pattern on the map
pattern(tx)

Создайте 3х3 антенную решетку сайта получателя

Создайте 3х3 прямоугольный массив из поддержанного отражателем вертикального дипольного элемента антенны. На каждом сайте получателя укажите массив к базовой станции и постройте диаграмму направленности на карте.

rxElement = reflectorDipoleElement(fq);

% Define array size
nrxrow = 3;
nrxcol = 3;
    
% Define element spacing
lambda = physconst("lightspeed")/fq;
drow = lambda/2;
dcol = lambda/2;

% Create antenna array
rxarray = phased.URA("Size",[nrxrow nrxcol], ...
    "Element",rxElement, ...
    "ElementSpacing",[drow dcol]);

% Assign array to each receiver site and point toward base station
for rx = rxs
    rx.Antenna = rxarray;
    rx.AntennaAngle = angle(rx, tx);
    pattern(rx,fq)
end

Предскажите силу сигнала в свободном пространстве с Beamforming

Используйте модель распространения свободного пространства, чтобы вычислить полученную силу сигнала для каждого сайта получателя. Для каждого сайта регулируйте луч базовой станции, чтобы оптимизировать направленность для ссылки. Благоприятные условия, принятые свободным пространством, производят мощные сигналы на сайтах получателя, принимая чувствительность получателя-84 dBm [2].

steeringVector = phased.SteeringVector("SensorArray",tx.Antenna);
for rx = rxs
    % Compute steering vector for receiver site
    [az,el] = angle(tx,rx);
    sv = steeringVector(fq,[az;el]);
    
    % Update base station radiation pattern
    tx.Antenna.Taper = conj(sv);
    pattern(tx)
    
    % Compute signal strength (dBm)
    ss = sigstrength(rx,tx,"freespace");
    disp("Signal strength at " + rx.Name + ":")
    disp(ss + " dBm")
end
Signal strength at Bedford Town Center:
-69.6717 dBm
Signal strength at St. Anselm College:
-68.0405 dBm
Signal strength at Goffstown Police Dept:
-66.3268 dBm

Одновременная передача

Вместо того, чтобы регулировать луч антенны базовой станции на каждый сайт получателя в свою очередь, сгенерируйте один луч, который может передать на все сайты получателя одновременно. Один луч генерирует лепестки излучения к трем сайтам получателя. Отбрасывания силы сигнала на каждом сайте получателя с одновременной передачей, но все еще встречают чувствительности получателя.

steeringVector = phased.SteeringVector("SensorArray",tx.Antenna);

% Compute steering vector for receiver site
[az,el] = angle(tx,rxs);
sv = steeringVector(fq,[az el]');

% Update base station radiation pattern
tx.Antenna.Taper = conj(sum(sv,2));
pattern(tx)

% Compute signal strength (dBm)
for rx = rxs
    ss = sigstrength(rx,tx,"freespace");
    disp("Signal strength at " + rx.Name + ":")
    disp(ss + " dBm")
end
Signal strength at Bedford Town Center:
-75.2864 dBm
Signal strength at St. Anselm College:
-72.2938 dBm
Signal strength at Goffstown Police Dept:
-72.0289 dBm

Добавьте нарушения пути потерь

Дополнительное затухание сигнала происходит из-за листвы и погоды. Используйте модель [3] Вайссбергера, чтобы оценить потерю пути из-за листвы и использовать модель распространения дождя, чтобы оценить силу сигнала во время проливного дождя. В присутствии нарушений пути потерь предполагаемая сила сигнала становится слабой и опускается ниже чувствительности получателя-84 dBm.

% Assume that propagation path travels through 25 m of foliage
foliageDepth = 25;
L = 1.33*((fq/1e9)^0.284)*foliageDepth^0.588; % Weissberger model for d > 14
disp("Path loss due to foliage: " + L + " dB")
Path loss due to foliage: 22.7422 dB
% Assign foliage loss as static SystemLoss on each receiver site
for rx = rxs
    rx.SystemLoss = L;
end

% Compute signal strength with foliage loss
for rx = rxs
    rx.SystemLoss = L;
    ss = sigstrength(rx,tx,"freespace");
    disp("Signal strength at " + rx.Name + ":")
    disp(ss + " dBm")
end
Signal strength at Bedford Town Center:
-98.0287 dBm
Signal strength at St. Anselm College:
-95.036 dBm
Signal strength at Goffstown Police Dept:
-94.7711 dBm
% Compute signal strength with foliage loss and heavy rain, which is between
% 4 mm and 16 mm per hour. Reference: http://wiki.sandaysoft.com/a/Rain_measurement
rainpm = propagationModel('rain','RainRate',16);
for rx = rxs
    ss = sigstrength(rx,tx,rainpm);
    disp("Signal strength at " + rx.Name + ":")
    disp(ss + " dBm")
end
Signal strength at Bedford Town Center:
-115.0478 dBm
Signal strength at St. Anselm College:
-110.8593 dBm
Signal strength at Goffstown Police Dept:
-107.1591 dBm

Производительность в полосе на 3,5 ГГц

Полоса на 3,5 ГГц является видной полосой на рассмотрении для радио [1] 5G. Перепроектируйте систему MU-MIMO для этой более низкой частоты, чтобы достигнуть более благоприятной потери пути и достигнуть необходимой силы сигнала.

fq = 3.5e9; % 3.5 GHz

% Create antenna array for base station
lambda = physconst("lightspeed")/fq;
drow = lambda/2;
dcol = lambda/2;
tx.TransmitterFrequency = fq;
tx.Antenna = phased.URA("Size",[ntxrow ntxcol], ...
    "Element",reflectorCrossedDipoleElement(fq), ...
    "ElementSpacing",[drow dcol]);

% Create antenna array for receiver sites
lambda = physconst("lightspeed")/fq;
drow = lambda/2;
dcol = lambda/2;
rxarray = phased.URA("Size",[nrxrow nrxcol], ...
    "Element",reflectorDipoleElement(fq), ...
    "ElementSpacing",[drow dcol], ...
    "ArrayNormal","x");
for rx = rxs
    rx.Antenna = rxarray;
end

В дополнение к вычислению силы сигнала на каждом сайте получателя сгенерируйте карту покрытия с помощью модели распространения Лонгли-Райса с нарушением дождя. Модель Лонгли-Райса, которая также известна как Неправильную модель ландшафта (ITM), оценивает потерю пути на основе дифракции и другие потери, выведенные от ландшафта. Модель Лонгли-Райса допустима от 20 МГц до 20 ГГц и поэтому доступна для 3,5 ГГц, но не для 28 ГГц.

% Compute steering vector for receiver site
steeringVector = phased.SteeringVector("SensorArray",tx.Antenna);
[az,el] = angle(tx,rxs);
sv = steeringVector(fq,[az el]');

% Update base station radiation pattern
tx.Antenna.Taper = conj(sum(sv,2));
pattern(tx,'Size',4000)
    
% Recompute loss due to foliage
L = 1.33*((fq/1e9)^0.284)*foliageDepth^0.588; % Weissberger model for d > 14

% Assign foliage loss as static SystemLoss on each receiver site
for rx = rxs
    rx.SystemLoss = L;
end
disp("Path loss due to foliage: " + L + " dB")
Path loss due to foliage: 12.5996 dB
% Add rain loss to the base Longley-Rice propagation model
pm = propagationModel('longley-rice') + rainpm;

% Compute receiver gain from peak antenna gain and system loss
G = pattern(rxarray, fq);
rxGain = max(G(:)) - L;

coverage(tx, ...
    'PropagationModel',pm, ...
    'ReceiverGain',rxGain, ...
    'ReceiverAntennaHeight',6, ...
    'SignalStrengths',-84:-50)

% Compute signal strength with foliage loss and rain
for rx = rxs
    ss = sigstrength(rx,tx,pm);
    disp("Signal strength at " + rx.Name + ":")
    disp(ss + " dBm")
end
Signal strength at Bedford Town Center:
-69.8324 dBm
Signal strength at St. Anselm College:
-66.8278 dBm
Signal strength at Goffstown Police Dept:
-66.5582 dBm

Сводные данные

Этот пример показывает, как запланировать фиксированную ссылку беспроводного доступа по ландшафту с помощью технологий 5G в многопользовательском пригородном сценарии. В то время как распространение угла обзора достигается по ландшафту, нарушения пути потерь представляют несущую частоту на 28 ГГц, неподходящую для ссылок несмотря на использование антенн с высоким коэффициентом усиления и beamforming. Сложение одной только потери листвы пропускает силу сигнала ниже чувствительности получателя-84 dBm, и сложение потери дождя значительно пропускает его далее. Более низкая частота 3,5 ГГц требуется, чтобы достигать успешных ссылок в областях значений мультикилометра, рассмотренных здесь. В результате этот пример иллюстрирует чувствительность высоких несущих частот 5G к общим нарушениям пути потерь.

Ссылки

[1] Технологический Анализ Ericsson, Закрепленный беспроводной доступ в крупном масштабе с 5G, Андерсом Фураскэром, Кимом Ларакуи, Сибелью Томбэз, Алабама Nazari, Бьорн Скубик, Elmar Trojer, декабрь 2016

[2] Микроволновый Журнал, пред5G и 5G: mmWave Соединит работу?, Андреас Ресслер, декабрь 2017

[3] Джон Сеиболд, введение в распространение РФ, Вайли, 2005

function element = reflectorCrossedDipoleElement(fq, showAntenna)
%reflectorCrossedDipoleElement   Design reflector-backed crossed dipole antenna element

if nargin < 2
    showAntenna = false;
end

lambda = physconst("lightspeed")/fq;
offset = lambda/50;
gndspacing = lambda/4;
gndLength = lambda;
gndWidth = lambda;

% Design crossed dipole elements
d1 = design(dipole,fq);
d1.Tilt = [90,-45];
d1.TiltAxis = ["y","z"];
d2 = copy(d1);
d2.Tilt = 45;
d2.TiltAxis = "x";

% Design reflector
r = design(reflector,fq);
r.Exciter = d1;
r.GroundPlaneLength = gndLength;
r.GroundPlaneWidth = gndWidth;
r.Spacing = gndspacing;
r.Tilt = 90;
r.TiltAxis = "y";
if showAntenna
    show(r)
end

% Form the crossed dipole backed by reflector
refarray = conformalArray;
refarray.ElementPosition(1,:) = [gndspacing 0 0];
refarray.ElementPosition(2,:) = [gndspacing+offset 0 0];
refarray.Element = {r, d2};
refarray.Reference = "feed";
refarray.PhaseShift = [0 90];
if showAntenna
    show(refarray);
    view(65,20)
end

% Create custom antenna element from pattern
[g,az,el] = pattern(refarray,fq);
element = phased.CustomAntennaElement;
element.AzimuthAngles = az;
element.ElevationAngles = el;
element.MagnitudePattern = g;
element.PhasePattern = zeros(size(g));
end

function element = reflectorDipoleElement(fq)
%reflectorDipoleElement   Design reflector-backed dipole antenna element

% Design reflector and exciter, which is vertical dipole by default
element = design(reflector,fq);
element.Exciter = design(element.Exciter,fq);

% Tilt antenna element to radiate in xy-plane, with boresight along x-axis
element.Tilt = 90;
element.TiltAxis = "y";
element.Exciter.Tilt = 90;
element.Exciter.TiltAxis = "y";
end