Проект усилителя обратной связи

Этот пример показывает проект схемы усилителя обратной связи неинвертирования с помощью Control System Toolbox™. Этот проект создается вокруг операционного усилителя (операционный усилитель), стандартный стандартный блок электрических схем обратной связи.

Этот пример показывает, как действительная электрическая система может быть разработана, смоделирована и анализировала использование инструментов, обеспеченных Control System Toolbox.

Описание операционного усилителя

Стандартный стандартный блок электрических схем обратной связи является операционным усилителем (операционный усилитель), дифференциальный усилитель напряжения, разработанный, чтобы иметь чрезвычайно высокое усиление dc, часто в области значений 1e5 к 1e7.

Электрический символ для операционного усилителя показывают ниже.

Этот пример принимает использование некомпенсированного операционного усилителя с 2 полюсами (на частотах w1, w2) и высокое усиление dc (a0). Принятие этого операционного усилителя управляется в его линейном режиме (не насыщаемый), затем его передаточная функция разомкнутого цикла может быть представлена как система линейного независимого от времени (LTI), как показано выше.

Хотя полюса высшего порядка будут существовать в физическом операционном усилителе, он был принят в этом случае, что эти полюса лежат в частотном диапазоне, где значение понизилось значительно ниже единицы.

Передаточная функция разомкнутого цикла:

Следующие системные параметры приняты:

a0 = 1e5;
w1 = 1e4;
w2 = 1e6;

Затем, вы хотите создать модель передаточной функции этой системы с помощью Control System Toolbox. Эта модель будет храниться в рабочей области MATLAB® как объект LTI.

Во-первых, задайте переменную Лапласа, s, с помощью команды TF. Затем используйте', чтобы создать передаточную функцию разомкнутого цикла, (s):

s = tf('s');
a = a0/(1+s/w1)/(1+s/w2)
a =
 
           1e15
  ----------------------
  s^2 + 1.01e06 s + 1e10
 
Continuous-time transfer function.

Можно просмотреть частотную характеристику (s) с помощью команды BODEPLOT:

h = bodeplot(a,'r');

setoptions(h,'FreqUnits','rad/s','MagUnits','dB','PhaseUnits','deg',...
    'YLimMode','Manual','YLim',{[0,110],[-180,0]});

Щелкните правой кнопкой по графику получить доступ к меню свойств для этой диаграммы Боде. Щелкните левой кнопкой по кривым, чтобы создать подвижные маркеры данных, которые могут использоваться, чтобы получить детали ответа.

Можно просмотреть нормированный переходной процесс (s) с помощью STEPPLOT и команд DCGAIN:

a_norm = a / dcgain(a);
stepplot(a_norm,'r')

title('Normalized Open-Loop Step Response');
ylabel('Normalized Amplitude');

Щелкните правой кнопкой по графику и выберите "Characteristics-> Settling Time", чтобы отобразить время установления. Держите мышь над маркером времени установления, чтобы показать точное значение времени установления.

Усилитель обратной связи

Теперь добавьте резистивную сеть обратной связи и соедините систему проводом как усилитель неинвертирования.

Эта сеть обратной связи, b (s), является просто делителем напряжения с входом Vo и выводом Vn. При решении для отношения Vn/Vo приводит к передаточной функции для b (s):

     b  =  Vn / Vo  =  R1 / (R1 + R2)

Представление блок-схемы системы показывают ниже.

Решение для отношения Vo/Vp приводит к усилению с обратной связью, (s):

     A  =  Vo / Vp  =  a / (1 + ab)

Если продукт 'ab' является достаточно большим (>> 1), то (s) может быть аппроксимирован как

     A  =  1 / b

Теперь примите, что необходимо разработать усилитель усиления dc (Vo/Vp) 10 и что R1 фиксируется на уровне 10 кОм. Решение для урожаев R2:

A0 = 10;
b = 1 / A0;    % approximation for ab>>1
R1 = 10000;
R2 = R1 * (1/b - 1)
R2 =

       90000

Создайте систему с обратной связью с помощью команды FEEDBACK:

A = feedback(a,b);

Затем, постройте частотные характеристики (s) и (s) вместе с помощью команды BODEMAG:

bodemag(a,'r',A,'b');

legend('Open-Loop Gain (a)','Closed-Loop Gain (A)')
ylim([0,110]);

% Annotations
opampdemo_annotate(1)

Использование отрицательной обратной связи, чтобы уменьшать низкочастотное (LF) усиление привело к соответствующему увеличению системной пропускной способности (заданный как частота, где усиление опускается на 3 дБ ниже его максимального значения).

Это усиление / компромисс пропускной способности является мощным инструментом в проекте схем усилителя обратной связи.

Поскольку усиление теперь во власти сети обратной связи, полезное отношение, чтобы рассмотреть является чувствительностью этого усиления к изменению в операционном усилителе, естественном (разомкнутый цикл) усиление.

Прежде, чем вывести системную чувствительность, однако, полезно задать усиление цикла, L (s) =a (s) b (s), который является общим доходом, сигнал испытывает перемещение вокруг цикла:

L = a * b;

Вы будете использовать это количество, чтобы оценить системную чувствительность и запасы устойчивости.

Системная чувствительность, S (s), представляет чувствительность (s) к изменению в (s).

Обратная связь между S (s) и L (s) показывает другое преимущество отрицательной обратной связи: "получите desensitivity".

S = 1 / (1 + L);

S (s) имеет ту же форму как уравнение обратной связи и, поэтому, может быть создан с помощью более - устойчивая команда FEEDBACK:

S = feedback(1,L);

Значения S (s) и (s) могут быть построены вместе с помощью команды BODEMAG:

bodemag(A,'b',S,'g')
legend('Closed-Loop Gain(A)', 'System Sensitivity(S)','Location','SouthEast')

Очень маленькая низкочастотная чувствительность (приблизительно-80 дБ) указывает на проект, чье усиление с обратной связью страдает минимально от изменения коэффициента усиления разомкнутого контура. Такое изменение в (s) распространено из-за изменчивости производственного процесса, изменения температуры, и т.д.

Можно проверять переходной процесс (s) с помощью команды STEPPLOT:

stepplot(A)

% Annotation
opampdemo_annotate(2)

Обратите внимание на то, что использование обратной связи значительно уменьшало время установления (приблизительно на 98%). Однако переходной процесс теперь отображает большой объем вызова, указывая на плохой запас устойчивости.

Можно анализировать запас устойчивости путем графического вывода усиления цикла, L (s), с ГРАНИЧНОЙ командой:

margin(L)

Получившийся график показывает поле фазы меньше чем 6 градусов. Необходимо будет компенсировать этот усилитель в порядке повысить поле фазы до допустимого уровня (обычно 45 градусов или больше), таким образом уменьшая чрезмерное перерегулирование и вызов.

Ведущая компенсация обратной связи

Обычно используемый метод компенсации в этом типе схемы является "ведущей компенсацией обратной связи". Этот метод изменяет b (s) путем добавления конденсатора, C, параллельно с резистором обратной связи, R2.

Конденсаторное значение выбрано, чтобы ввести вывод фазы b (s) около перекрестной частоты, таким образом увеличив поле фазы усилителя.

Новую передаточную функцию обратной связи показывают ниже.

Можно аппроксимировать значение для C путем размещения нуля b (s) на частоте перекрестного соединения 0dB L (s):

[Gm,Pm,Wcg,Wcp] = margin(L);
C = 1/(R2*Wcp)
C =

   1.1139e-12

Чтобы изучить эффект C на ответе усилителя, создайте массив модели LTI b (s) для нескольких значений C вокруг вашего исходного предположения:

K = R1/(R1+R2);
C = [1:.2:3]*1e-12;
for n = 1:length(C)
    b_array(:,:,n) = tf([K*R2*C(n) K],[K*R2*C(n) 1]);
end

Теперь можно создать массивы LTI для (s) и L (s):

A_array = feedback(a,b_array);
L_array = a*b_array;

Можно построить переходной процесс всех моделей в массиве LTI, A_array (s), вместе с (s) с помощью команды STEPPLOT:

stepplot(A,'b:',A_array,'b',[0:.005:1]*1.5e-6);
title('Closed-Loop Step Response (Compensated)');

% Plot Annotations
opampdemo_annotate(3)

Поля фазы для нашего массива усиления цикла, L_array (s), найдены с помощью ГРАНИЧНОЙ команды:

[Gm,Pm,Wcg,Wcp] = margin(L_array);

Поля фазы могут теперь быть построены как функция C.

plot(C*1e12,Pm,'g');
ax = gca;
xlim([0.8 3.6]);
ylim([45 60]);
ax.Box = 'on';
xlabel('Compensation Capacitor, C (pF)');
ylabel('Phase Margin (deg)')

% Plot Annotations
opampdemo_annotate(4)

Максимальное поле фазы 58 градусов получено когда C=2pF (2e-12).

Модель, соответствующая C=2pF, является шестой моделью в массиве LTI, b_array (s). Можно построить переходной процесс системы замкнутого цикла для этой модели путем выбора индекса 6 массива LTI A_array (s):

A_comp = A_array(:,:,6);
stepplot(A,'b:',A_comp,'b')
legend('Uncompensated (0 pF)','Compensated (2 pF)')

Обратите внимание на то, что время установления далее уменьшалось (на дополнительные 85%).

Мы можем наложить частотную характеристику всех трех моделей (разомкнутый цикл, с обратной связью, компенсированный с обратной связью) использование команды BODE:

bodeplot(a,'r',A,'b:',A_comp,'b')
legend('a(s)','A(s)','A\_comp(s)');

Отметьте, как сложение конденсатора компенсации устранило худой в усилении с обратной связью и также значительно расширило поле фазы.

Сводные данные

Краткий обзор выбора значений компонента в проекте этой схемы усилителя обратной связи неинвертирования:

  • Итоговые значения компонента: R1 = 10 кОм, R2 = 90 кОм, C = 2 пФ.

  • Резистивная сеть обратной связи (R1, R2) была выбрана, чтобы привести к усилению широкополосного усилителя 10 (20 дБ).

  • Ведущая компенсация обратной связи использовалась, чтобы настроить усиление цикла около перекрестной частоты. Значение для конденсатора компенсации, C, было оптимизировано, чтобы обеспечить максимальное поле фазы приблизительно 58 градусов.

Для просмотра документации необходимо авторизоваться на сайте