Объекты данных и объекты модели в System Identification Toolbox™

Этот пример показывает, как управлять объектами данных и объектами модели, доступными в System Identification Toolbox™. Система идентификации о создавании моделей от данных. Набор данных характеризуется несколькими данными: сигналы ввода и вывода, шаг расчета, имена переменных и модули, и т.д. Точно так же предполагаемые модели содержат информацию различных видов - оцененные параметры, их ковариационные матрицы, образцовая структура и так далее.

Это означает, что подходит и желательно группировать релевантную информацию вокруг данных и моделей в объекты. System Identification Toolbox™ содержит много таких объектов, и основные характеристики их описаны в этом примере.

Объект IDDATA

Сначала создайте некоторые данные:

u = sign(randn(200,2)); % 2 inputs
y = randn(200,1);       % 1 output
ts = 0.1;               % The sample time

Чтобы собрать вход и вывод в одном объекте делают

z = iddata(y,u,ts);

Информация о данных отображена, только введя ее имя:

z
z =

Time domain data set with 200 samples.
Sample time: 0.1 seconds               
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       
Inputs       Unit (if specified)       
   u1                                  
   u2                                  
                                       

Данные отображены на графике как iddata командой plot, как в plot(z). Нажмите клавишу, чтобы продолжиться и совершенствоваться между подграфиками. Здесь, мы строим каналы отдельно:

plot(z(:,1,1)) % Data subset with Input 1 and Output 1.

plot(z(:,1,2)) % Data subset with Input 2 and Output 1.

Чтобы получить выходные параметры и входные параметры, использовать

u = z.u;   % or, equivalently u = get(z,'u');
y = z.y;   % or, equivalently y = get(z,'y');

Выбрать фрагмент данных:

zp = z(48:79);

Выбрать первый вывод и второй вход:

zs = z(:,1,2);  % The ':' refers to all the data time points.

Подвыборы могут быть объединены:

plot(z(45:54,1,2)) % samples 45 to 54 of response from second input to the first output.

Каналам дают имена по умолчанию 'y1', 'u2' и т.д. Это может быть изменено на любые значения

set(z,'InputName',{'Voltage';'Current'},'OutputName','Speed');

Эквивалентно мы могли записать

z.inputn = {'Voltage';'Current'}; % Autofill is used for properties
z.outputn = 'Speed';    % Upper and lower cases are also ignored

Для бухгалтерии и графиков, также могут быть установлены модули:

z.InputUnit = {'Volt';'Ampere'};
z.OutputUnit = 'm/s';
z
z =

Time domain data set with 200 samples.
Sample time: 0.1 seconds               
                                       
Outputs       Unit (if specified)      
   Speed         m/s                   
                                       
Inputs        Unit (if specified)      
   Voltage       Volt                  
   Current       Ampere                
                                       

Все текущие свойства (что касается любого объекта) получены, доберитесь:

get(z)
ans = 

  struct with fields:

              Domain: 'Time'
                Name: ''
          OutputData: [200x1 double]
                   y: 'Same as OutputData'
          OutputName: {'Speed'}
          OutputUnit: {'m/s'}
           InputData: [200x2 double]
                   u: 'Same as InputData'
           InputName: {2x1 cell}
           InputUnit: {2x1 cell}
              Period: [2x1 double]
         InterSample: {2x1 cell}
                  Ts: 0.1000
              Tstart: []
    SamplingInstants: [200x0 double]
            TimeUnit: 'seconds'
      ExperimentName: 'Exp1'
               Notes: {}
            UserData: []

В дополнение к свойствам, обсужденным до сих пор, у нас есть 'Период', который обозначает период входа, если периодический Период = inf означает апериодический вход:

z.Period
ans =

   Inf
   Inf

Междемонстрационное поведение входа может быть дано как 'zoh' ("нулевой порядок, содержат", т.е. кусочная константа) или 'foh' (сначала - содержат порядок, т.е. кусочный линейный). Идентификационные стандартные программы используют эту информацию, чтобы настроить алгоритмы.

z.InterSample
ans =

  2x1 cell array

    {'zoh'}
    {'zoh'}

Можно добавить каналы (оба ввода и вывода) "горизонтальной конкатенацией", т.е. z = [z1 z2]:

z2 = iddata(rand(200,1),ones(200,1),0.1,'OutputName','New Output',...
    'InputName','New Input');
z3 = [z,z2]
z3 =

Time domain data set with 200 samples.
Sample time: 0.1 seconds               
                                       
Outputs          Unit (if specified)   
   Speed            m/s                
   New Output                          
                                       
Inputs           Unit (if specified)   
   Voltage          Volt               
   Current          Ampere             
   New Input                           
                                       

Давайте построим некоторые каналы z3:

plot(z3(:,1,1)) % Data subset with Input 2 and Output 1.

plot(z3(:,2,3)) % Data subset with Input 2 and Output 3.

Генерация входных параметров

Команда idinput генерирует типичные входные сигналы.

u = idinput([30 1 10],'sine'); % 10 periods of 30 samples
u = iddata([],u,1,'Period',30) % Making the input an IDDATA object.
u =

Time domain data set with 300 samples.
Sample time: 1 seconds                 
                                       
Inputs       Unit (if specified)       
   u1                                  
                                       

SIM применился к входу iddata, поставляет iddata вывод. Давайте использовать sim, чтобы получить ответ предполагаемой модели m с помощью входа u. Мы также добавляем шум в образцовый ответ в соответствии с шумовой динамикой модели. Мы делаем это при помощи опции симуляции "AddNoise":

m = idpoly([1 -1.5 0.7],[0 1 0.5]);  % This creates a model; see below.
options = simOptions;
options.AddNoise = true;
y = sim(m,u,options) % simulated response produced as an iddata object
y =

Time domain data set with 300 samples.
Sample time: 1 seconds                 
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       

Вход u симуляции и вывод y могут быть объединены в один объект iddata можно следующим образом:

z5 = [y u] % The output-input iddata.
z5 =

Time domain data set with 300 samples.
Sample time: 1 seconds                 
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       
Inputs       Unit (if specified)       
   u1                                  
                                       

Больше о iddata объект найден под help iddata.

Линейные объекты модели

Все модели поставляются, когда MATLAB® возражает. Существует несколько различных объектов в зависимости от типа используемой модели, но это в основном прозрачно.

load iddata1
m = armax(z1,[2 2 2 1]);  % This creates an ARMAX model, delivered as an IDPOLY object

Все соответствующие свойства этой модели группированы как один объект (здесь, idpoly). Чтобы отобразить его только вводят его имя:

m
m =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)
  A(z) = 1 - 1.531 z^-1 + 0.7293 z^-2                    
                                                         
  B(z) = 0.943 z^-1 + 0.5224 z^-2                        
                                                         
  C(z) = 1 - 1.059 z^-1 + 0.1968 z^-2                    
                                                         
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   na=2   nb=2   nc=2   nk=1
   Number of free coefficients: 6
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using ARMAX on time domain data "z1".  
Fit to estimation data: 76.38% (prediction focus)
FPE: 1.127, MSE: 1.082                           
    Many of the model properties are directly accessible
m.a    % The A-polynomial
ans =

    1.0000   -1.5312    0.7293

Список свойств получен, доберитесь:

get(m)
                 A: [1 -1.5312 0.7293]
                 B: [0 0.9430 0.5224]
                 C: [1 -1.0587 0.1968]
                 D: 1
                 F: 1
    IntegrateNoise: 0
          Variable: 'z^-1'
           IODelay: 0
         Structure: [1x1 pmodel.polynomial]
     NoiseVariance: 1.1045
            Report: [1x1 idresults.polyest]
        InputDelay: 0
       OutputDelay: 0
                Ts: 0.1000
          TimeUnit: 'seconds'
         InputName: {'u1'}
         InputUnit: {''}
        InputGroup: [1x1 struct]
        OutputName: {'y1'}
        OutputUnit: {''}
       OutputGroup: [1x1 struct]
             Notes: [0x1 string]
          UserData: []
              Name: ''
      SamplingGrid: [1x1 struct]

Используйте present, чтобы просмотреть предполагаемую ковариацию параметра как + значения/-1 неуверенности стандартного отклонения на отдельных параметрах:

present(m)
                                                                              
m =                                                                           
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)                     
  A(z) = 1 - 1.531 (+/- 0.01801) z^-1 + 0.7293 (+/- 0.01473) z^-2             
                                                                              
  B(z) = 0.943 (+/- 0.06074) z^-1 + 0.5224 (+/- 0.07818) z^-2                 
                                                                              
  C(z) = 1 - 1.059 (+/- 0.06067) z^-1 + 0.1968 (+/- 0.05957) z^-2             
                                                                              
Sample time: 0.1 seconds                                                      
                                                                              
Parameterization:                                                             
   Polynomial orders:   na=2   nb=2   nc=2   nk=1                             
   Number of free coefficients: 6                                             
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
                                                                              
Status:                                                                       
Termination condition: Near (local) minimum, (norm(g) < tol)..                
Number of iterations: 3, Number of function evaluations: 7                    
                                                                              
Estimated using ARMAX on time domain data "z1".                               
Fit to estimation data: 76.38% (prediction focus)                             
FPE: 1.127, MSE: 1.082                                                        
More information in model's "Report" property.                                

Используйте getpvec, чтобы выбрать плоский список всех параметров модели, или только свободные единицы и их неуверенность. Используйте getcov, чтобы выбрать целую ковариационную матрицу.

[par, dpar] = getpvec(m, 'free')
CovFree = getcov(m,'value')
par =

   -1.5312
    0.7293
    0.9430
    0.5224
   -1.0587
    0.1968


dpar =

    0.0180
    0.0147
    0.0607
    0.0782
    0.0607
    0.0596


CovFree =

    0.0003   -0.0003    0.0000    0.0007    0.0004   -0.0003
   -0.0003    0.0002   -0.0000   -0.0004   -0.0003    0.0002
    0.0000   -0.0000    0.0037   -0.0034   -0.0000    0.0001
    0.0007   -0.0004   -0.0034    0.0061    0.0008   -0.0005
    0.0004   -0.0003   -0.0000    0.0008    0.0037   -0.0032
   -0.0003    0.0002    0.0001   -0.0005   -0.0032    0.0035

nf = 0, без обозначения даты = 0 обозначают порядки общей линейной модели, которой модель ARMAX является особым случаем.

Отчет содержит информацию о процессе оценки:

m.Report
m.Report.DataUsed       % record of data used for estimation
m.Report.Fit            % quantitative measures of model quality
m.Report.Termination    % search termination conditions
ans = 

              Status: 'Estimated using ARMAX with prediction focus'
              Method: 'ARMAX'
    InitialCondition: 'zero'
                 Fit: [1x1 struct]
          Parameters: [1x1 struct]
         OptionsUsed: [1x1 idoptions.polyest]
           RandState: [1x1 struct]
            DataUsed: [1x1 struct]
         Termination: [1x1 struct]


ans = 

  struct with fields:

            Name: 'z1'
            Type: 'Time domain data'
          Length: 300
              Ts: 0.1000
     InterSample: 'zoh'
     InputOffset: []
    OutputOffset: []


ans = 

  struct with fields:

    FitPercent: 76.3807
       LossFcn: 1.0824
           MSE: 1.0824
           FPE: 1.1266
           AIC: 887.1256
          AICc: 887.4123
          nAIC: 0.1192
           BIC: 909.3483


ans = 

  struct with fields:

                 WhyStop: 'Near (local) minimum, (norm(g) < tol).'
              Iterations: 3
    FirstOrderOptimality: 7.2436
                FcnCount: 7
              UpdateNorm: 0.0067
         LastImprovement: 0.0067

Чтобы получить онлайновую информацию о минимизации, используйте опцию оценки 'Отображения' с возможными значениями 'off', 'on', и 'полный'. Это запускает средство просмотра прогресса, которое показывает информацию об образцовом прогрессе оценки.

Opt = armaxOptions('Display','on');
m1 = armax(z1,[2 2 2 1],Opt);

Варианты линейных моделей - IDTF, IDPOLY, IDPROC, IDSS и IDGREY

Существует несколько типов линейных моделей. Тот выше является примером версии idpoly для полиномиальных моделей типа. Различные варианты моделей полиномиального типа, такие как модели Box-Jenkins, модели Output Error, модели ARMAX и т.д. получены с помощью соответствующих средств оценки - bj, oe, armax, arx и т.д. Все они представлены как объекты idpoly.

Другими вариантами является idss для моделей в пространстве состояний; idgrey для пользовательских структурированных моделей в пространстве состояний; idtf для моделей передаточной функции и idproc для моделей процессов (gain+delay+static усиление).

Команды, чтобы оценить модель: bode, step, iopzmap, compare, и т.д., все работают непосредственно с объектами модели, например:

compare(z1,m1)

Преобразования к пространству состояний, передаточной функции и нулям/полюсам получены idssdata, tfdata и zpkdata:

[num,den]  = tfdata(m1,'v')
num =

         0    0.9430    0.5224


den =

    1.0000   -1.5312    0.7293

'v' означает, что цифра и логово возвращены как векторы и не как массивы ячеек. Массивы ячеек полезны, чтобы обработать многомерные системы. Также получать 1 неуверенность стандартного отклонения в значениях использования den и num:

[num, den, ~, dnum, dden] = tfdata(m1,'v')
num =

         0    0.9430    0.5224


den =

    1.0000   -1.5312    0.7293


dnum =

         0    0.0607    0.0782


dden =

         0    0.0180    0.0147

Преобразование идентифицированных моделей в числовой LTIs Control System Toolbox™

Объекты также соединяются непосредственно с объектами модели Control System Toolbox™, как tf, ss и zpk, и могут быть преобразованы в эти объекты LTI, если Control System Toolbox доступен. Например, tf преобразовывает объект idpoly в объект tf.

CSTBInstalled = exist('tf','class')==8;
if CSTBInstalled % check if Control System Toolbox is installed
    tfm = tf(m1) % convert IDPOLY model m1 into a TF object
end
tfm =
 
  From input "u1" to output "y1":
    0.943 z^-1 + 0.5224 z^-2
  ----------------------------
  1 - 1.531 z^-1 + 0.7293 z^-2
 
Sample time: 0.1 seconds
Discrete-time transfer function.

При преобразовании модели IDLTI в модели Control Systems Toolbox's LTI не сохраняется шумовой компонент. Чтобы также включать шумовые каналы как регулярные входные параметры модели LTI, используйте 'увеличенный' флаг:

if CSTBInstalled
    tfm2 = tf(m1,'augmented')
end
tfm2 =
 
  From input "u1" to output "y1":
    0.943 z^-1 + 0.5224 z^-2
  ----------------------------
  1 - 1.531 z^-1 + 0.7293 z^-2
 
  From input "v@y1" to output "y1":
  1.051 - 1.113 z^-1 + 0.2069 z^-2
  --------------------------------
    1 - 1.531 z^-1 + 0.7293 z^-2
 
Input groups:           
      Name      Channels
    Measured       1    
     Noise         2    
                        
Sample time: 0.1 seconds
Discrete-time transfer function.

Шумовой канал называют v@y1 в модели tfm2.

Дополнительная информация

Для получения дополнительной информации об идентификации динамических систем с System Identification Toolbox посещают страницу информации о продукте System Identification Toolbox.

Для просмотра документации необходимо авторизоваться на сайте