Моделирование фронтэнда РФ в симуляции радиолокационной системы

В радиолокационной системе фронтэнд РФ часто играет важную роль в определении производительности системы. Например, потому что фронтэнд РФ является первым разделом в цепочке получателя, проект ее низкого шумового усилителя очень важен для достижения желаемого сигнала к шумовому отношению (ОСШ). Этот пример показывает, как включить поведение фронтэнда РФ в существующую разработку радарных систем.

Этот пример требует RF Blockset™.

Доступные реализации в качестве примера

Этот пример включает две модели Simulink®:

Введение

Несколько примеров, такой, когда От начала до конца Моностатический Радар и Автомобильный Адаптивный Круиз-контроль Используя FMCW и Технологию MFSK показали, что можно создать сквозные радиолокационные системы в Simulink с помощью Phased Array System Toolbox. Во многих случаях, если системная модель создается, следующий шаг мог добавлять больше точности в различных компонентах. Популярный кандидат на такой компонент является фронтэндом РФ. Одним преимуществом моделирования системы в Simulink является возможность выполнения многодоменных симуляций.

Следующие разделы показывают два примера слияния возможности моделирования RF Blockset в радиолокационных системах, созданных с Phased Array System Toolbox.

Моностатический радар с одной целью

Первая модель принята от примера, Моделируя Взаимную Связь в Больших массивах Используя Встроенный Шаблон Элемента, который моделирует моностатический импульсный радар с одной целью. Из самой схемы модель ниже выглядит идентичной модели, показанной в том примере.

Когда модель выполняется, получившийся график является также тем же самым.

Однако более глубокий взгляд в подсистеме передатчика показывает, что теперь передатчик моделируется усилителями мощности от RF Blockset.

Подобные изменения также реализованы в стороне получателя.

С этими изменениями модель способна к симуляции поведений РФ. Например, результат симуляции, показанный выше, принимает совершенный усилитель мощности. В действительных приложениях усилитель перенесет много нелинейности. Если вы устанавливаете IP3 передатчика к 70 дБ, и запустите симуляцию снова, пик, соответствующий цели, больше не как доминирующий. Это дает инженеру некоторое знание относительно производительности системы под различными ситуациями.

Радарная область значений FMCW и оценка скорости

Второй пример принят от Автомобильного Адаптивного Круиз-контроля Используя FMCW и Технологию MFSK. Однако эта модель использует треугольную форму волны развертки вместо этого, таким образом, система может оценить область значений и скорость одновременно. В верхнем уровне модель подобна тому, что создается из Phased Array System Toolbox. После того, как выполняемый, модель показывает предполагаемую область значений и значения скорости, который совпадает с расстоянием и относительной скоростью целевого автомобиля.

Однако подобный первому примеру, подсистемы передатчика и получателя теперь создаются с блоками RF Blockset.

Следующие данные показывают подсистему передатчика.

Следующие данные показывают подсистему получателя.

В непрерывной радиолокационной системе волны часть переданной формы волны используется в качестве ссылки на dechirp полученное целевое эхо. Из схем выше, каждый видит, что переданная форма волны отправляется в получатель через разветвитель, и dechirp выполняется через микшер I/Q. Поэтому путем корректировки параметров в тех компонентах РФ, более высокая точность симуляции может быть достигнута.

Сводные данные

Этот пример показывает две радарных модели, которые первоначально созданы с Phased Array System Toolbox и позже включили модели РФ от RF Blockset. Точность симуляции значительно улучшена путем объединения этих двух продуктов вместе.