Исправьте антенную решетку для радара FMCW

Этот пример показывает, как смоделировать 77 ГГц 2x4 антенная решетка для радарных приложений Модулируемой частотой Непрерывной Волны (FMCW). Присутствие антенн и антенных решеток в и вокруг автомобилей стало банальностью с введением беспроводного обнаружения столкновений, предотвращения столкновения и систем предупреждения о сходе с полосы. Эти два диапазона частот, рассмотренные для таких систем, сосредоточены приблизительно 24 ГГц и 77 ГГц, соответственно. В этом примере мы исследуем микрополосковую антенну закрашенной фигуры как поэтапный теплоотвод массивов. Диэлектрическая подложка является воздухом.

Этот пример требует Antenna Toolbox™.

Проект антенной решетки

Антенная решетка FMCW предназначается для прямой радиолокационной системы, разработанной, чтобы искать и предотвратить столкновение. Поэтому шаблон антенны косинуса является соответствующим выбором для первоначального проекта, поскольку это не излучает энергии назад. Примите, что радиолокационная система действует на уровне 77 ГГц с пропускной способностью на 700 МГц.

fc = 77e9;
fmin = 73e9;
fmax = 80e9;
vp = physconst('lightspeed');
lambda = vp/fc;

cosineantenna = phased.CosineAntennaElement;
cosineantenna.FrequencyRange = [fmin fmax];
pattern(cosineantenna,fc)

Сам массив должен быть смонтирован на или вокруг переднего бампера. Конфигурация массивов, которую мы исследуем, 2 X 4 прямоугольных массива, подобные тому, что упоминается в [1]. Такой проект имеет большую апертуру вдоль направления азимута, таким образом обеспечивающего лучшее разрешение азимута.

Nrow = 2;
Ncol = 4;
fmcwCosineArray = phased.URA;
fmcwCosineArray.Element = cosineantenna;
fmcwCosineArray.Size = [Nrow Ncol];
fmcwCosineArray.ElementSpacing = [0.5*lambda 0.5*lambda];
pattern(fmcwCosineArray,fc)

Разработайте реалистическую антенну закрашенной фигуры

Antenna Toolbox имеет несколько элементов антенны, которые могли предоставить полусферическую страховую защиту и напоминают шаблон формы косинуса. Выберите элемент антенны закрашенной фигуры с типичными размерностями теплоотвода. Длина закрашенной фигуры является приблизительно полудлиной волны на уровне 77 ГГц, и ширина является 1.5 раза длиной к улучшению пропускной способности. Наземная плоскость находится на каждой стороне, и смещение канала от центра в направлении длины закрашенной фигуры составляет приблизительно четверть длины.

patchElement = patchMicrostrip;
patchElement.Length = 0.49*lambda;
patchElement.Width = 1.5*patchElement.Length;
patchElement.GroundPlaneLength = lambda;
patchElement.GroundPlaneWidth = lambda;
patchElement.Height = 0.01*lambda;
patchElement.FeedOffset = [patchElement.Length/4 0];

Поскольку геометрии антенны закрашенной фигуры по умолчанию направили ее максимальное излучение к зениту, вращайте антенну закрашенной фигуры 90 градусами об оси Y так, чтобы максимум теперь произошел бы вдоль оси X.

patchElement.Tilt = 90;
patchElement.TiltAxis = [0 1 0];

Изолированная антенна закрашенной фигуры 3D шаблон и резонанс

Постройте шаблон антенны закрашенной фигуры на уровне 77 ГГц. Закрашенная фигура является средней антенной усиления с пиковой направленностью вокруг 6-9 dBi.

myFigure = gcf;
myFigure.Color = 'w';
pattern(patchElement,fc)

Закрашенная фигура исходит в правильном режиме с максимумом шаблона в 0 азимутах степеней и 0 повышениях степеней. Поскольку начальные размерности являются приближениями, важно проверить поведение входного импеданса антенны.

Numfreqs = 21;
freqsweep = unique([linspace(fmin,fmax,Numfreqs) fc]);
impedance(patchElement,freqsweep);

Согласно фигуре, антенна закрашенной фигуры имеет свой первый резонанс (найдите что-либо подобное резонансу) на уровне 74 ГГц. Это - установившаяся практика, чтобы переключить этот резонанс к 77 ГГц путем масштабирования длины закрашенной фигуры.

act_resonance = 74e9;
lambda_act = vp/act_resonance;
scale = lambda/lambda_act;
patchElement.Length = scale*patchElement.Length;

Следующий элемент в контрольном списке является отражательным коэффициентом антенны закрашенной фигуры. Цель этой проверки состоит в том, чтобы подтвердить хорошую подобранность импедансов. Это типично, чтобы рассмотреть значение как пороговое значение для определения пропускной способности антенны.

s = sparameters(patchElement,freqsweep);
rfplot(s,'m-.')
hold on
line(freqsweep,ones(1,numel(freqsweep))*-10,'LineWidth',1.5)
hold off

Глубокий минимум на уровне 77 ГГц указывает на хорошее соответствие к 50. Пропускная способность антенны немного больше, чем 1 ГГц. Таким образом диапазон частот от 76,5 ГГц до 77,5 ГГц.

Наконец, проверяйте, выполняет ли шаблон на частотах ребра полосы проекту. Это - хорошая индикация, ведет ли шаблон себя то же самое через полосу. Шаблоны на уровне 76,5 ГГц и 77,6 ГГц показывают ниже.

pattern(patchElement,76.5e9)
%
pattern(patchElement,77.6e9)
%

В целом это - хорошая практика, чтобы проверять поведение шаблона по диапазону частот интереса.

Создайте массив из изолированных теплоотводов и постройте шаблон

Затем, создает универсальный прямоугольный массив (URA) с антенной закрашенной фигуры. Интервал выбран, чтобы быть, где длина волны на верхней частоте полосы (77,6 ГГц).

fc2 = 77.6e9;
lambda_fc2 = vp/77.6e9;
fmcwPatchArray = phased.URA;
fmcwPatchArray.Element = patchElement;
fmcwPatchArray.Size = [Nrow Ncol];
fmcwPatchArray.ElementSpacing = [0.5*lambda_fc2 0.5*lambda_fc2];

Следующие данные показывают шаблон получившейся антенной решетки закрашенной фигуры. Шаблон вычисляется с помощью 5 разделений степени и в азимуте и в повышении.

az = -180:5:180;
el = -90:5:90;
clf
pattern(fmcwPatchArray,fc,az,el)

Графики ниже сравнивают изменение шаблона в 2 ортогональных плоскостях для антенной решетки закрашенной фигуры и массива элемента косинуса. Обратите внимание на то, что оба массива игнорируют взаимный эффект связи.

Во-первых, шаблон вдоль направления азимута.

clf
patternAzimuth(fmcwPatchArray,fc)
hold on
patternAzimuth(fmcwCosineArray,fc)
legend('Patch','Cosine','Location','NorthEastOutside')

Затем шаблон вдоль направления повышения.

clf
patternElevation(fmcwPatchArray,fc)
hold on
patternElevation(fmcwCosineArray,fc)
legend('Patch','Cosine','Location','NorthEastOutside')

Данные показывают, что оба массива имеют подобное поведение шаблона вокруг основного луча в плоскости повышения (азимут = 0 градусов). Массив элемента закрашенной фигуры имеет значительный backlobe по сравнению с массивом элемента косинуса.

Заключения

Этот пример запускает проект антенной решетки для радара FMCW с идеальной антенной косинуса и затем использует антенну закрашенной фигуры, чтобы сформировать действительный массив. Пример сравнивает шаблоны от этих двух массивов, чтобы показать компромисс проекта. От сравнения это видно, что использование изолированного элемента закрашенной фигуры является полезным первым шагом в понимании эффекта, который реалистический элемент антенны имел бы на шаблон массивов.

Однако анализ реалистических массивов должен также рассмотреть взаимный эффект связи. Поскольку это - небольшой массив (8 элементов в 2x4 настройка), шаблоны отдельного элемента в среде массивов могли быть значительно искажены. В результате не возможно заменить изолированный шаблон элемента на встроенный шаблон элемента, как показано в Моделирующей Взаимной Связи в Больших массивах Используя Встроенный пример Шаблона Элемента. Двухполупериодный анализ должен быть выполнен, чтобы понять эффект взаимной связи на полной производительности массива.

Ссылка

[1] Р. Калк, и др. Радарный Датчик на 24 ГГц Интегрирует Антенны Закрашенной фигуры, EMPC 2005 http://empire.de/main/Empire/pdf/publications/2005/26-doc-empc2005.pdf