Возможность соединения CAN в приложении робототехники

Этот пример показывает вам, как использовать Vehicle Network Toolbox™, чтобы реализовать Сеть области контроллера (CAN) в удаленной руке манипулятора с помощью Simulink®. Используемые сообщения CAN заданы в файле базы данных CAN, canDatabaseFor6DofRoboticArm.dbc.

Vehicle Network Toolbox обеспечивает блоки Simulink для передачи и получения живых сообщений с помощью моделей Simulink по Сетям области контроллера (CAN). Этот пример использует Настройку CAN, Пакет CAN, Передачу CAN, CAN Получают, и CAN Распаковывает блоки, чтобы выполнить передачу данных по шине CAN.

MathWorks виртуальные каналы CAN используется для этого примера. Также можно соединить модели с другим поддерживаемым оборудованием.

Образцовое описание

Модель состоит из следующих подсистем: система руки Манипулятора, Инверсная кинематика и контроллер, Объединенный интерфейс передачи CAN, Объединенный CAN получает интерфейс, Инверсную кинематику и интерфейс передачи CAN контроллера, и Инверсная кинематика и CAN контроллера получают интерфейс. Каждое соединение и инверсная кинематика и подсистема контроллера составляют узел в шине CAN.

Вводы данных пользователем координаты положения (X, Y и Z в метрах) и ориентация (список, подача и углы отклонения от курса в градусах, в теле 3 2-3-1 последовательность) исполнительного элемента конца. Инверсная кинематика и подсистема контроллера получают обратную связь от объединенных угловых датчиков, которые отправляются через шину CAN, и отправляет соответствующие команды в каждый объединенный двигатель через шину CAN, чтобы управлять положением anf ориентация исполнительного элемента конца к значениям ввода данных пользователем.

Удаленная рука манипулятора принята, чтобы быть присоединенной к космическому кораблю в орбите. В результате силой тяжести пропускают.

Система руки манипулятора

Эта подсистема состоит из модели твердого тела удаленной руки манипулятора, смоделированного 2G Simscape Multibody использования. Рука имеет шесть соединений. Каждое соединение приводится в действие двигателем постоянного тока с коробкой передач и моделируется с помощью Simscape Основополагающая Библиотека. Каждое соединение также имеет объединенный угловой датчик. Данные о датчике в отправленном в шину CAN. Каждый двигатель приводится в действие управляемым источником напряжения. Источники напряжения получают сообщения от шины CAN и применяют напряжение постоянного тока через их терминалы, соответствующие информации в сообщениях.

Инверсная кинематика и контроллер

Инверсная кинематика и подсистема контроллера дальнейшие реализации инверсная кинематика и алгоритм управления. Инверсная кинематика вычисляет желаемые объединенные углы из желаемого положения (X, Y и Z) и ориентация (список, подача и углы отклонения от курса), которые вводятся пользователем. Дискретные ПИД-регуляторы используют объединенные угловые значения датчика, которые читаются из шины CAN, чтобы определить напряжение постоянного тока, которое должно быть применено к каждому двигателю, чтобы управлять объединенными углами к требуемым значениям. Значения напряжения постоянного тока отправляются как сообщения в шине CAN.

Объединенный интерфейс передачи CAN

Эта подсистема состоит из блоков VNT, которые необходимы, чтобы передать объединенные угловые значения от соответствующих датчиков в шину CAN.

Объединенный CAN получает интерфейс

Эта подсистема состоит из блоков VNT, которые необходимы, чтобы получить и распаковать сообщения от шины CAN, которые содержат информацию о напряжениях постоянного тока, которые должны быть применены к управляемым источникам напряжения, соответствующим каждому двигателю.

Инверсная кинематика и интерфейс передачи CAN контроллера

Эта подсистема состоит из блоков VNT, которые необходимы, чтобы передать моторные сигналы (напряжения постоянного тока, которые должны быть применены через управляемые источники напряжения), вычисленный Инверсной кинематикой и Подсистемой контроллера в шину CAN.

Инверсная кинематика и CAN контроллера получают интерфейс

Эта подсистема состоит из блоков VNT, которые необходимы, чтобы получить сообщения от шины CAN, которые содержат информацию об объединенных углах, которые отправляются объединенными угловыми датчиками.