Обучите сеть с несколькими Выходными параметрами

В этом примере показано, как обучить нейронную сеть для глубокого обучения с несколькими выходными параметрами, которые предсказывают и метки и углы вращений рукописных цифр.

Чтобы обучить сеть с несколькими выходными параметрами, необходимо задать сеть как функцию и обучить ее с помощью пользовательского учебного цикла.

Загрузите обучающие данные

digitTrain4DArrayData функционируйте загружает изображения, их метки цифры и их углы вращения от вертикали.

[XTrain,YTrain,anglesTrain] = digitTrain4DArrayData;
classNames = categories(YTrain);
numClasses = numel(classNames);
numObservations = numel(YTrain);

Просмотрите некоторые изображения от обучающих данных.

idx = randperm(numObservations,64);
I = imtile(XTrain(:,:,:,idx));
figure
imshow(I)

Задайте модель глубокого обучения

Задайте следующую сеть, которая предсказывает и метки и углы вращения.

  • convolution-batchnorm-ReLU блокируется с 16 фильтрами 5 на 5.

  • Ветвь двух блоков свертки-batchnorm каждый с 32 3х3 фильтрами с операцией ReLU между

  • Связь пропуска со сверткой-batchnorm блокируется с 32 свертками 1 на 1.

  • Объедините обе ветви с помощью сложения, сопровождаемого операцией ReLU

  • Для регрессии выход, ветвь с полностью связанной операцией размера 1 (количество ответов).

  • Для классификации выход, ветвь с полностью связанной операцией размера 10 (количество классов) и softmax операцией.

Задайте и инициализируйте параметры модели и состояние

Задайте параметры для каждой из операций и включайте их в struct. Используйте формат parameters.OperationName.ParameterName где parameters struct, OperationName имя операции (например, "conv_1") и ParameterName имя параметра (например, "Веса").

Создайте struct parameters содержа параметры модели. Инициализируйте learnable веса слоя с помощью функции, взятой в качестве примера, initializeGaussian, перечисленный в конце примера. Инициализируйте learnable смещения слоя с нулями. Инициализируйте пакетное смещение нормализации и масштабные коэффициенты с нулями и единицами, соответственно.

Чтобы выполнить обучение и вывод с помощью пакетных слоев нормализации, необходимо также управлять сетевым состоянием. Перед прогнозом необходимо задать среднее значение набора данных и отклонение, выведенное из обучающих данных. Создайте struct state содержа параметры состояния. Инициализируйте пакетную нормализацию обученное среднее значение и обученные состояния отклонения с нулями и единицами, соответственно.

parameters.conv1.Weights = dlarray(initializeGaussian([5,5,1,16]));
parameters.conv1.Bias = dlarray(zeros(16,1,'single'));

parameters.batchnorm1.Offset = dlarray(zeros(16,1,'single'));
parameters.batchnorm1.Scale = dlarray(ones(16,1,'single'));
state.batchnorm1.TrainedMean = zeros(16,1,'single');
state.batchnorm1.TrainedVariance  = ones(16,1,'single');

parameters.convSkip.Weights = dlarray(initializeGaussian([1,1,16,32]));
parameters.convSkip.Bias = dlarray(zeros(32,1,'single'));

parameters.batchnormSkip.Offset = dlarray(zeros(32,1,'single'));
parameters.batchnormSkip.Scale = dlarray(ones(32,1,'single'));
state.batchnormSkip.TrainedMean = zeros(32,1,'single');
state.batchnormSkip.TrainedVariance = ones(32,1,'single');

parameters.conv2.Weights = dlarray(initializeGaussian([3,3,16,32]));
parameters.conv2.Bias = dlarray(zeros(32,1,'single'));

parameters.batchnorm2.Offset = dlarray(zeros(32,1,'single'));
parameters.batchnorm2.Scale = dlarray(ones(32,1,'single'));
state.batchnorm2.TrainedMean = zeros(32,1,'single');
state.batchnorm2.TrainedVariance  = ones(32,1,'single');

parameters.conv3.Weights = dlarray(initializeGaussian([3,3,32,32]));
parameters.conv3.Bias = dlarray(zeros(32,1,'single'));

parameters.batchnorm3.Offset = dlarray(zeros(32,1,'single'));
parameters.batchnorm3.Scale = dlarray(ones(32,1,'single'));
state.batchnorm3.TrainedMean = zeros(32,1,'single');
state.batchnorm3.TrainedVariance  = ones(32,1,'single');

parameters.fc2.Weights = dlarray(initializeGaussian([10,6272]));
parameters.fc2.Bias = dlarray(zeros(numClasses,1,'single'));

parameters.fc1.Weights = dlarray(initializeGaussian([1,6272]));
parameters.fc1.Bias = dlarray(zeros(1,1,'single'));

Просмотрите struct параметров.

parameters
parameters = struct with fields:
            conv1: [1×1 struct]
       batchnorm1: [1×1 struct]
         convSkip: [1×1 struct]
    batchnormSkip: [1×1 struct]
            conv2: [1×1 struct]
       batchnorm2: [1×1 struct]
            conv3: [1×1 struct]
       batchnorm3: [1×1 struct]
              fc2: [1×1 struct]
              fc1: [1×1 struct]

Просмотрите параметры для "conv1" операции.

parameters.conv1
ans = struct with fields:
    Weights: [5×5×1×16 dlarray]
       Bias: [16×1 dlarray]

Просмотрите struct состояния.

state
state = struct with fields:
       batchnorm1: [1×1 struct]
    batchnormSkip: [1×1 struct]
       batchnorm2: [1×1 struct]
       batchnorm3: [1×1 struct]

Просмотрите параметры состояния для "batchnorm1" операции.

state.batchnorm1
ans = struct with fields:
        TrainedMean: [16×1 single]
    TrainedVariance: [16×1 single]

Функция модели Define

Создайте функциональный model, перечисленный в конце примера, который вычисляет выходные параметры модели глубокого обучения, описанной ранее.

Функциональный model берет входные данные dlX, параметры модели parameters, флаг doTraining который задает, должен ли к модели возвратить выходные параметры для обучения или прогноза и сетевого state состояния. Сетевые выходные параметры прогнозы для меток, прогнозы для углов и обновленное сетевое состояние.

Функция градиентов модели Define

Создайте функциональный modelGradients, перечисленный в конце примера, который берет мини-пакет входных данных dlX с соответствующими целями T1 и T2 содержание меток и углов, соответственно, и возвращает градиенты потери относительно learnable параметров, обновленного сетевого состояния и соответствующей потери.

Задайте опции обучения

Задайте опции обучения.

learnRate = 0.001;
momentum = 0.9;
numEpochs = 30;
miniBatchSize = 128;
plots = "training-progress";
trailingAvg = [];
trailingAvgSq = [];

numIterationsPerEpoch = floor(numObservations./miniBatchSize);

Обучайтесь на графическом процессоре, если вы доступны. Это требует Parallel Computing Toolbox™. Используя графический процессор требует Parallel Computing Toolbox™, и CUDA® включил NVIDIA®, графический процессор с вычисляет возможность 3.0 или выше.

executionEnvironment = "auto";

Обучите модель

Обучите модель с помощью пользовательского учебного цикла.

В течение каждой эпохи переставьте данные и цикл по мини-пакетам данных. В конце каждой эпохи отобразите прогресс обучения.

Для каждого мини-пакета:

  • Преобразуйте метки в фиктивные переменные.

  • Преобразуйте данные в dlarray объекты с базовым одним типом и указывают, что размерность маркирует 'SSCB' (пространственный, пространственный, канал, пакет).

  • Для обучения графического процессора преобразуйте в gpuArray объекты.

  • Оцените градиенты модели и потерю с помощью dlfeval и modelGradients функция.

  • Обновите сетевые параметры с помощью adamupdate функция.

Инициализируйте график процесса обучения.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline;
    xlabel("Iteration")
    ylabel("Loss")
end

Обучите модель.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
    
    % Shuffle data.
    idx = randperm(numObservations);
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(idx);
    anglesTrain = anglesTrain(idx);
    
    % Loop over mini-batches
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        
        % Read mini-batch of data and convert the labels to dummy
        % variables.
        X = XTrain(:,:,:,idx);
        
        Y1 = zeros(numClasses, miniBatchSize, 'single');
        for c = 1:numClasses
            Y1(c,YTrain(idx)==classNames(c)) = 1;
        end
        
        Y2 = anglesTrain(idx)';
        Y2 = single(Y2);
        
        % Convert mini-batch of data to dlarray.
        dlX = dlarray(X,'SSCB');
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            dlX = gpuArray(dlX);
        end
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelGradients function.
        [gradients,state,loss] = dlfeval(@modelGradients, dlX, Y1, Y2, parameters, state);
        
        % Update the network parameters using the Adam optimizer.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAvgSq,iteration);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end

Тестовая модель

Протестируйте точность классификации модели путем сравнения прогнозов на наборе тестов с истинными метками и углами

[XTest,YTest,anglesTest] = digitTest4DArrayData;

Преобразуйте данные в dlarray объект с форматом размерности 'SSCB'. Для прогноза графического процессора также преобразуйте данные в gpuArray.

dlXTest = dlarray(XTest,'SSCB');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    dlXTest = gpuArray(dlXTest);
end

Чтобы предсказать метки и углы данных о валидации, используйте функцию модели с doTraining набор опции к false.

doTraining = false;
[dlYPred,anglesPred] = model(dlXTest, parameters,doTraining,state);

Оцените точность классификации.

[~,idx] = max(extractdata(dlYPred),[],1);
labelsPred = classNames(idx);
accuracy = mean(labelsPred==YTest)
accuracy = 0.9892

Оцените точность регрессии.

angleRMSE = sqrt(mean((extractdata(anglesPred) - anglesTest').^2))
angleRMSE =

  1×1 single gpuArray

    7.5851

Просмотрите некоторые изображения с их прогнозами. Отобразите предсказанные углы красного цвета и правильные метки зеленого цвета.

idx = randperm(size(XTest,4),9);
figure
for i = 1:9
    subplot(3,3,i)
    I = XTest(:,:,:,idx(i));
    imshow(I)
    hold on
    
    sz = size(I,1);
    offset = sz/2;
    
    thetaPred = extractdata(anglesPred(idx(i)));
    plot(offset*[1-tand(thetaPred) 1+tand(thetaPred)],[sz 0],'r--')
    
    thetaValidation = anglesTest(idx(i));
    plot(offset*[1-tand(thetaValidation) 1+tand(thetaValidation)],[sz 0],'g--')
    
    hold off
    label = string(labelsPred(idx(i)));
    title("Label: " + label)
end

Функция модели

Функциональный model берет входные данные dlX, параметры модели parameters, флаг doTraining который задает, должен ли к модели возвратить выходные параметры для обучения или прогноза и сетевого state состояния. Сетевые выходные параметры прогнозы для меток, прогнозы для углов и обновленное сетевое состояние.

function [dlY1,dlY2,state] = model(dlX,parameters,doTraining,state)

% Convolution
W = parameters.conv1.Weights;
B = parameters.conv1.Bias;
dlY = dlconv(dlX,W,B,'Padding',2);

% Batch normalization, ReLU
Offset = parameters.batchnorm1.Offset;
Scale = parameters.batchnorm1.Scale;
trainedMean = state.batchnorm1.TrainedMean;
trainedVariance = state.batchnorm1.TrainedVariance;

if doTraining
    [dlY,trainedMean,trainedVariance] = batchnorm(dlY,Offset,Scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm1.TrainedMean = trainedMean;
    state.batchnorm1.TrainedVariance = trainedVariance;
else
    dlY = batchnorm(dlY,Offset,Scale,trainedMean,trainedVariance);
end
dlY = relu(dlY);

% Convolution, batch normalization (Skip connection)
W = parameters.convSkip.Weights;
B = parameters.convSkip.Bias;
dlYSkip = dlconv(dlY,W,B,'Stride',2);

Offset = parameters.batchnormSkip.Offset;
Scale = parameters.batchnormSkip.Scale;
trainedMean = state.batchnormSkip.TrainedMean;
trainedVariance = state.batchnormSkip.TrainedVariance;

if doTraining
    [dlYSkip,trainedMean,trainedVariance] = batchnorm(dlYSkip,Offset,Scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnormSkip.TrainedMean = trainedMean;
    state.batchnormSkip.TrainedVariance = trainedVariance;
else
    dlYSkip = batchnorm(dlYSkip,Offset,Scale,trainedMean,trainedVariance);
end

% Convolution
W = parameters.conv2.Weights;
B = parameters.conv2.Bias;
dlY = dlconv(dlY,W,B,'Padding',1,'Stride',2);

% Batch normalization, ReLU
Offset = parameters.batchnorm2.Offset;
Scale = parameters.batchnorm2.Scale;
trainedMean = state.batchnorm2.TrainedMean;
trainedVariance = state.batchnorm2.TrainedVariance;

if doTraining
    [dlY,trainedMean,trainedVariance] = batchnorm(dlY,Offset,Scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm2.TrainedMean = trainedMean;
    state.batchnorm2.TrainedVariance = trainedVariance;
else
    dlY = batchnorm(dlY,Offset,Scale,trainedMean,trainedVariance);
end
dlY = relu(dlY);

% Convolution
W = parameters.conv3.Weights;
B = parameters.conv3.Bias;
dlY = dlconv(dlY,W,B,'Padding',1);

% Batch normalization
Offset = parameters.batchnorm3.Offset;
Scale = parameters.batchnorm3.Scale;
trainedMean = state.batchnorm3.TrainedMean;
trainedVariance = state.batchnorm3.TrainedVariance;

if doTraining
    [dlY,trainedMean,trainedVariance] = batchnorm(dlY,Offset,Scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm3.TrainedMean = trainedMean;
    state.batchnorm3.TrainedVariance = trainedVariance;
else
    dlY = batchnorm(dlY,Offset,Scale,trainedMean,trainedVariance);
end

% Addition, ReLU
dlY = dlYSkip + dlY;
dlY = relu(dlY);

% Fully connect (angles)
W = parameters.fc1.Weights;
B = parameters.fc1.Bias;
dlY2 = fullyconnect(dlY,W,B);

% Fully connect, softmax (labels)
W = parameters.fc2.Weights;
B = parameters.fc2.Bias;
dlY1 = fullyconnect(dlY,W,B);
dlY1 = softmax(dlY1);

end

Функция градиентов модели

modelGradients функция, берет мини-пакет входных данных dlX с соответствующими целями T1 и T2 содержание меток и углов, соответственно, и возвращает градиенты потери относительно learnable параметров, обновленного сетевого состояния и соответствующей потери.

function [gradients,state,loss] = modelGradients(dlX,T1,T2,parameters,state)

doTraining = true;
[dlY1,dlY2,state] = model(dlX,parameters,doTraining,state);

lossLabels = crossentropy(dlY1,T1);
lossAngles = mse(dlY2,T2);

loss = lossLabels + 0.1*lossAngles;
gradients = dlgradient(loss,parameters);

end

Функция инициализации весов

initializeGaussian функциональные демонстрационные веса от Распределения Гаусса со средним значением 0 и стандартным отклонением 0.01.

function parameter = initializeGaussian(sz)
parameter = randn(sz,'single').*0.01;
end

Смотрите также

| | | | | | | |

Похожие темы

Для просмотра документации необходимо авторизоваться на сайте