Симулируйте состояния изменяющейся во времени модели в пространстве состояний Используя более сглаженную симуляцию

Этот пример генерирует данные из известной модели, соответствует модели в пространстве состояний к данным, и затем симулирует ряд от подобранной модели с помощью более сглаженной симуляции.

Предположим, что скрытый процесс включает AR (2) и модель MA (1). Существует 50 периодов и MA (1), процесс выпадает из модели в течение итоговых 25 периодов. Впоследствии, уравнение состояния в течение первых 25 периодов

и в течение последних 25 периодов, это

где и являются Гауссовыми со средним значением 0 и стандартным отклонением 1.

Предположение, что ряд запускается в 1,5 и 1, соответственно, генерирует случайную последовательность 50 наблюдений от и.

T = 50;
ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);
MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);
x0 = [1.5 1; 1.5 1];
rng(1);
x = [simulate(ARMdl,T,'Y0',x0(:,1)),...
    [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

Последними 25 значениями для симулированного MA (1) данные является NaN значения.

Предположим далее, что скрытые процессы измеряются с помощью

в течение первых 25 периодов, и

в течение последних 25 периодов, где является Гауссовым со средним значением 0 и стандартным отклонением 1.

Используйте случайный скрытый процесс состояния (x) и уравнение наблюдения, чтобы сгенерировать наблюдения.

y = 2*nansum(x')'+randn(T,1);

Вместе, скрытые уравнения процесса и наблюдения составляют модель в пространстве состояний. Если коэффициенты являются неизвестными параметрами, модель в пространстве состояний

в течение первых 25 периодов,

в течение периода 26, и

в течение последних 24 периодов.

Запишите функцию, которая задает как параметры в params сопоставьте с матрицами модели в пространстве состояний, значениями начального состояния и типом состояния.


% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = AR2MAParamMap(params,T)
%AR2MAParamMap Time-variant state-space model parameter mapping function
%
% This function maps the vector params to the state-space matrices (A, B,
% C, and D), the initial state value and the initial state variance (Mean0
% and Cov0), and the type of state (StateType). From periods 1 to T/2, the
% state model is an AR(2) and an MA(1) model, and the observation model is
% the sum of the two states. From periods T/2 + 1 to T, the state model is
% just the AR(2) model.
    A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};
    B1 = {[1 0; 0 0; 0 1; 0 1]}; 
    C1 = {params(4)*[1 0 1 0]};
    Mean0 = ones(4,1);
    Cov0 = 10*eye(4);
    StateType = [0 0 0 0];
    A2 = {[params(1) params(2) 0 0; 1 0 0 0]};
    B2 = {[1; 0]};
    A3 = {[params(1) params(2); 1 0]};
    B3 = {[1; 0]}; 
    C3 = {params(5)*[1 0]};
    A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];
    B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];
    C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];
    D = 1;
end

Сохраните этот код как файл с именем AR2MAParamMap на вашем пути MATLAB®.

Создайте модель в пространстве состояний путем передачи функционального AR2MAParamMap как указатель на функцию к ssm.

Mdl = ssm(@(params)AR2MAParamMap(params,T));

ssm неявно создает модель в пространстве состояний. Обычно, вы не можете проверить неявно заданную модель в пространстве состояний.

Симулируйте один путь состояний от Mdl с помощью более сглаженной симуляции. Укажите, что функция отображения параметра к матрице имеет семь выходных аргументов. Кроме того, задайте неизвестные значения параметров.

simParams = [0.48 0.0081 0.56 1.63 1.9];
X = simsmooth(Mdl,y,'NumOut',7,'Params',simParams);

X T- 1 вектор ячейки симулированных состояний. Ячейки 1 - 25 содержат 4 1 векторы, и ячейки 26 - 50 содержат 2 1 векторы.

Доступ к ячейке использующая индексация ячейки, например, ячейка доступа 5 использований X{5}.

simStatesPeriod5 = X{5}
simStatesPeriod5 =

   -1.7591
   -1.5404
   -1.5171
   -1.1417

Смотрите также

| | | |

Связанные примеры

Больше о

Для просмотра документации необходимо авторизоваться на сайте