exponenta event banner

Financial Toolbox — Examples

Расписания в финансах

Аналитика финансовых данных

Многомерная нормальная регрессия

Оптимизация портфеля и распределение активов

Оптимизация портфеля Используя факторные модели

Оптимизация портфеля Используя факторные модели

Два подхода для использования факторной модели, чтобы оптимизировать распределение активов под средой среднего отклонения. Мультифакторные модели часто используются в моделировании риска, управлении портфелем и приписывании производительности портфеля. Мультифакторная модель уменьшает размерность инвестиционной вселенной и ответственна за описание большей части случайности рынка [1]. Факторы могут быть статистическими, макроэкономическими, и основными. В первом подходе в этом примере вы создаете статистические факторы из актива, возвращается, и оптимизируйте выделение непосредственно против факторов. Во втором подходе вы используете данную факторную информацию, чтобы вычислить ковариационную матрицу актива, возвращается, и затем используйте класс Портфеля, чтобы оптимизировать распределение активов.

Оптимизация портфеля среднего отклонения

Создайте портфель

Оптимизация портфеля Используя факторные модели

Оптимизация портфеля Используя факторные модели

Два подхода для использования факторной модели, чтобы оптимизировать распределение активов под средой среднего отклонения. Мультифакторные модели часто используются в моделировании риска, управлении портфелем и приписывании производительности портфеля. Мультифакторная модель уменьшает размерность инвестиционной вселенной и ответственна за описание большей части случайности рынка [1]. Факторы могут быть статистическими, макроэкономическими, и основными. В первом подходе в этом примере вы создаете статистические факторы из актива, возвращается, и оптимизируйте выделение непосредственно против факторов. Во втором подходе вы используете данную факторную информацию, чтобы вычислить ковариационную матрицу актива, возвращается, и затем используйте класс Портфеля, чтобы оптимизировать распределение активов.

Оценочное среднее значение и ковариация для возвратов

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Используйте объект Portfolio непосредственно обработать полунепрерывный и ограничения кардинальности при выполнении оптимизации портфеля. Оптимизация портфеля находит распределение активов, которое максимизирует возврат или минимизирует риск согласно набору инвестиционных ограничений. Класс Портфеля в Financial Toolbox™ спроектирован и реализован на основе среды Оптимизации Markowitz Mean-Variance. Среда Оптимизации Среднего Отклонения решает проблемы, где возврат является ожидаемым портфелем, возвращаются, и риск является отклонением портфеля, возвращается. Используя класс Портфеля, можно минимизировать риск на границе эффективности (EF), максимизировать возврат на EF, максимизировать возврат для данного риска и минимизировать риск для данного возврата. Можно также использовать классы PortfolioCVaR или PortfolioMAD в Financial Toolbox™, чтобы задать полунепрерывный и ограничения кардинальности. Такие задачи оптимизации объединяются с ограничениями, такими как группа, линейное неравенство, оборот и ошибочные ограничения отслеживания. Эти ограничения формулируются как нелинейное программирование (NLP) проблемы с непрерывными переменными, представленными как кси весов актива.

Оптимизация портфеля Используя факторные модели

Оптимизация портфеля Используя факторные модели

Два подхода для использования факторной модели, чтобы оптимизировать распределение активов под средой среднего отклонения. Мультифакторные модели часто используются в моделировании риска, управлении портфелем и приписывании производительности портфеля. Мультифакторная модель уменьшает размерность инвестиционной вселенной и ответственна за описание большей части случайности рынка [1]. Факторы могут быть статистическими, макроэкономическими, и основными. В первом подходе в этом примере вы создаете статистические факторы из актива, возвращается, и оптимизируйте выделение непосредственно против факторов. Во втором подходе вы используете данную факторную информацию, чтобы вычислить ковариационную матрицу актива, возвращается, и затем используйте класс Портфеля, чтобы оптимизировать распределение активов.

Задайте ограничения портфеля

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Используйте объект Portfolio непосредственно обработать полунепрерывный и ограничения кардинальности при выполнении оптимизации портфеля. Оптимизация портфеля находит распределение активов, которое максимизирует возврат или минимизирует риск согласно набору инвестиционных ограничений. Класс Портфеля в Financial Toolbox™ спроектирован и реализован на основе среды Оптимизации Markowitz Mean-Variance. Среда Оптимизации Среднего Отклонения решает проблемы, где возврат является ожидаемым портфелем, возвращаются, и риск является отклонением портфеля, возвращается. Используя класс Портфеля, можно минимизировать риск на границе эффективности (EF), максимизировать возврат на EF, максимизировать возврат для данного риска и минимизировать риск для данного возврата. Можно также использовать классы PortfolioCVaR или PortfolioMAD в Financial Toolbox™, чтобы задать полунепрерывный и ограничения кардинальности. Такие задачи оптимизации объединяются с ограничениями, такими как группа, линейное неравенство, оборот и ошибочные ограничения отслеживания. Эти ограничения формулируются как нелинейное программирование (NLP) проблемы с непрерывными переменными, представленными как кси весов актива.

Подтвердите портфель

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Используйте объект Portfolio непосредственно обработать полунепрерывный и ограничения кардинальности при выполнении оптимизации портфеля. Оптимизация портфеля находит распределение активов, которое максимизирует возврат или минимизирует риск согласно набору инвестиционных ограничений. Класс Портфеля в Financial Toolbox™ спроектирован и реализован на основе среды Оптимизации Markowitz Mean-Variance. Среда Оптимизации Среднего Отклонения решает проблемы, где возврат является ожидаемым портфелем, возвращаются, и риск является отклонением портфеля, возвращается. Используя класс Портфеля, можно минимизировать риск на границе эффективности (EF), максимизировать возврат на EF, максимизировать возврат для данного риска и минимизировать риск для данного возврата. Можно также использовать классы PortfolioCVaR или PortfolioMAD в Financial Toolbox™, чтобы задать полунепрерывный и ограничения кардинальности. Такие задачи оптимизации объединяются с ограничениями, такими как группа, линейное неравенство, оборот и ошибочные ограничения отслеживания. Эти ограничения формулируются как нелинейное программирование (NLP) проблемы с непрерывными переменными, представленными как кси весов актива.

Оцените эффективные портфели и границы

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Используйте объект Portfolio непосредственно обработать полунепрерывный и ограничения кардинальности при выполнении оптимизации портфеля. Оптимизация портфеля находит распределение активов, которое максимизирует возврат или минимизирует риск согласно набору инвестиционных ограничений. Класс Портфеля в Financial Toolbox™ спроектирован и реализован на основе среды Оптимизации Markowitz Mean-Variance. Среда Оптимизации Среднего Отклонения решает проблемы, где возврат является ожидаемым портфелем, возвращаются, и риск является отклонением портфеля, возвращается. Используя класс Портфеля, можно минимизировать риск на границе эффективности (EF), максимизировать возврат на EF, максимизировать возврат для данного риска и минимизировать риск для данного возврата. Можно также использовать классы PortfolioCVaR или PortfolioMAD в Financial Toolbox™, чтобы задать полунепрерывный и ограничения кардинальности. Такие задачи оптимизации объединяются с ограничениями, такими как группа, линейное неравенство, оборот и ошибочные ограничения отслеживания. Эти ограничения формулируются как нелинейное программирование (NLP) проблемы с непрерывными переменными, представленными как кси весов актива.

Оптимизация портфеля Используя факторные модели

Оптимизация портфеля Используя факторные модели

Два подхода для использования факторной модели, чтобы оптимизировать распределение активов под средой среднего отклонения. Мультифакторные модели часто используются в моделировании риска, управлении портфелем и приписывании производительности портфеля. Мультифакторная модель уменьшает размерность инвестиционной вселенной и ответственна за описание большей части случайности рынка [1]. Факторы могут быть статистическими, макроэкономическими, и основными. В первом подходе в этом примере вы создаете статистические факторы из актива, возвращается, и оптимизируйте выделение непосредственно против факторов. Во втором подходе вы используете данную факторную информацию, чтобы вычислить ковариационную матрицу актива, возвращается, и затем используйте класс Портфеля, чтобы оптимизировать распределение активов.

Постобработка результатов

Условная подверженная риску значения оптимизация портфеля

Оцените эффективные портфели и границы

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Используйте объект Portfolio непосредственно обработать полунепрерывный и ограничения кардинальности при выполнении оптимизации портфеля. Оптимизация портфеля находит распределение активов, которое максимизирует возврат или минимизирует риск согласно набору инвестиционных ограничений. Класс Портфеля в Financial Toolbox™ спроектирован и реализован на основе среды Оптимизации Markowitz Mean-Variance. Среда Оптимизации Среднего Отклонения решает проблемы, где возврат является ожидаемым портфелем, возвращаются, и риск является отклонением портфеля, возвращается. Используя класс Портфеля, можно минимизировать риск на границе эффективности (EF), максимизировать возврат на EF, максимизировать возврат для данного риска и минимизировать риск для данного возврата. Можно также использовать классы PortfolioCVaR или PortfolioMAD в Financial Toolbox™, чтобы задать полунепрерывный и ограничения кардинальности. Такие задачи оптимизации объединяются с ограничениями, такими как группа, линейное неравенство, оборот и ошибочные ограничения отслеживания. Эти ограничения формулируются как нелинейное программирование (NLP) проблемы с непрерывными переменными, представленными как кси весов актива.

Средняя абсолютная оптимизация портфеля отклонения

Оцените эффективные портфели и границы

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Оптимизация портфеля с полунепрерывным и ограничения кардинальности

Используйте объект Portfolio непосредственно обработать полунепрерывный и ограничения кардинальности при выполнении оптимизации портфеля. Оптимизация портфеля находит распределение активов, которое максимизирует возврат или минимизирует риск согласно набору инвестиционных ограничений. Класс Портфеля в Financial Toolbox™ спроектирован и реализован на основе среды Оптимизации Markowitz Mean-Variance. Среда Оптимизации Среднего Отклонения решает проблемы, где возврат является ожидаемым портфелем, возвращаются, и риск является отклонением портфеля, возвращается. Используя класс Портфеля, можно минимизировать риск на границе эффективности (EF), максимизировать возврат на EF, максимизировать возврат для данного риска и минимизировать риск для данного возврата. Можно также использовать классы PortfolioCVaR или PortfolioMAD в Financial Toolbox™, чтобы задать полунепрерывный и ограничения кардинальности. Такие задачи оптимизации объединяются с ограничениями, такими как группа, линейное неравенство, оборот и ошибочные ограничения отслеживания. Эти ограничения формулируются как нелинейное программирование (NLP) проблемы с непрерывными переменными, представленными как кси весов актива.

Кредитный риск

Оцените вероятности перехода

Создайте протоколы результатов кредита

Цена и Анализ Финансовых Инструментов

Модели Стохастического дифференциального уравнения (SDE)

Симуляция