В этом примере показано, как реализовать квадратный корень фиксированной точки с помощью интерполяционной таблицы. Интерполяционные таблицы генерируют эффективный код для встроенных устройств.
Настройка
Чтобы гарантировать, что этот пример не изменяет ваши настройки или настройки, этот код хранит исходное состояние, и вы восстановите его в конце.
originalFormat = get(0, 'format'); format long g originalWarningState = warning('off','fixed:fi:underflow'); originalFiprefState = get(fipref); reset(fipref)
Алгоритм квадратного корня получен в итоге здесь.
Объявите количество битов в байте, B
, как константа. В этом примере, B=8
.
Используйте функциональный fi_normalize_unsigned_8_bit_byte()
описанный в примере Нормируют Данные для Интерполяционных таблиц, чтобы нормировать вход u>0
таким образом, что u = x * 2^n
, 0.5 <= x < 2
, и n
ровно.
Извлеките верхний B
- биты x
. Позвольте x_B
обозначьте верхний B
- биты x
.
Сгенерируйте интерполяционную таблицу, SQRTLUT, такой что целочисленный i = x_B- 2^(B-2) + 1
используется в качестве индекса к SQRTLUT так, чтобы sqrt(x_B)
может быть оценен путем поиска индекса sqrt(x_B) = SQRTLUT(i).
Используйте остаток, r = x - x_B
, интерпретированный как часть, чтобы линейно интерполировать между SQRTLUT(i)
и следующее значение в таблице SQRTLUT(i+1)
. Остаток, r
, создается путем извлечения более низкого w - B
биты x
, где w
обозначает размер слова x
. Это интерпретировано как часть при помощи функционального reinterpretcast()
.
Наконец, вычислите выход с помощью интерполяционной таблицы и линейной интерполяции:
sqrt( u ) = sqrt( x * 2^n ) = sqrt(x) * 2^(n/2) = ( SQRTLUT( i ) + r * ( SQRTLUT( i+1 ) - SQRTLUT( i ) ) ) * 2^(n/2)
function y = fi_sqrtlookup_8_bit_byte(u) %#codegen % Load the lookup table SQRTLUT = sqrt_lookup_table(); % Remove fimath from the input to insulate this function from math % settings declared outside this function. u = removefimath(u); % Declare the output y = coder.nullcopy(fi(zeros(size(u)), numerictype(SQRTLUT), fimath(SQRTLUT))); B = 8; % Number of bits in a byte w = u.WordLength; for k = 1:numel(u) assert(u(k)>=0,'Input must be non-negative.'); if u(k)==0 y(k)=0; else % Normalize the input such that u = x * 2^n and 0.5 <= x < 2 [x,n] = fi_normalize_unsigned_8_bit_byte(u(k)); isodd = storedInteger(bitand(fi(1,1,8,0),fi(n))); x = bitsra(x,isodd); n = n + isodd; % Extract the high byte of x high_byte = storedInteger(bitsliceget(x, w, w - B + 1)); % Convert the high byte into an index for SQRTLUT i = high_byte - 2^(B-2) + 1; % The upper byte was used for the index into SQRTLUT. % The remainder, r, interpreted as a fraction, is used to % linearly interpolate between points. T_unsigned_fraction = numerictype(0, w-B, w-B); r = reinterpretcast(bitsliceget(x,w-B,1), T_unsigned_fraction); y(k) = bitshift((SQRTLUT(i) + r*(SQRTLUT(i+1) - SQRTLUT(i))),... bitsra(n,1)); end end % Remove fimath from the output to insulate the caller from math settings % declared inside this function. y = removefimath(y); end
Функциональный sqrt_lookup_table
загружает интерполяционную таблицу значений квадратного корня. Можно составить таблицу путем выполнения:
sqrt_table = sqrt( (2^(B-2):2^(B))/2^(B-1) );
function SQRTLUT = sqrt_lookup_table() B = 8; % Number of bits in a byte % sqrt_table = sqrt( (2^(B-2):2^(B))/2^(B-1) ) sqrt_table = [0.707106781186548 0.712609640686961 0.718070330817254 0.723489806424389 ... 0.728868986855663 0.734208757779421 0.739509972887452 0.744773455488312 ... 0.750000000000000 0.755190373349661 0.760345316287277 0.765465544619743 ... 0.770551750371122 0.775604602874429 0.780624749799800 0.785612818123533 ... 0.790569415042095 0.795495128834866 0.800390529679106 0.805256170420320 ... 0.810092587300983 0.814900300650331 0.819679815537750 0.824431622392057 ... 0.829156197588850 0.833854004007896 0.838525491562421 0.843171097702003 ... 0.847791247890659 0.852386356061616 0.856956825050130 0.861503047005639 ... 0.866025403784439 0.870524267324007 0.875000000000000 0.879452954966893 ... 0.883883476483184 0.888291900221993 0.892678553567856 0.897043755900458 ... 0.901387818865997 0.905711046636840 0.910013736160065 0.914296177395487 ... 0.918558653543692 0.922801441264588 0.927024810886958 0.931229026609459 ... 0.935414346693485 0.939581023648307 0.943729304408844 0.947859430506444 ... 0.951971638232989 0.956066158798647 0.960143218483576 0.964203038783845 ... 0.968245836551854 0.972271824131503 0.976281209488332 0.980274196334883 ... 0.984250984251476 0.988211768802619 0.992156741649222 0.996086090656827 ... 1.000000000000000 1.003898650263063 1.007782218537319 1.011650878514915 ... 1.015504800579495 1.019344151893756 1.023169096484056 1.026979795322186 ... 1.030776406404415 1.034559084827928 1.038327982864759 1.042083250033317 ... 1.045825033167594 1.049553476484167 1.053268721647045 1.056970907830485 ... 1.060660171779821 1.064336647870400 1.068000468164691 1.071651762467640 ... 1.075290658380328 1.078917281352004 1.082531754730548 1.086134199811423 ... 1.089724735885168 1.093303480283494 1.096870548424015 1.100426053853688 ... 1.103970108290981 1.107502821666834 1.111024302164449 1.114534656257938 ... 1.118033988749895 1.121522402807898 1.125000000000000 1.128466880329237 ... 1.131923142267177 1.135368882786559 1.138804197393037 1.142229180156067 ... 1.145643923738960 1.149048519428140 1.152443057161611 1.155827625556683 ... 1.159202311936963 1.162567202358642 1.165922381636102 1.169267933366857 ... 1.172603939955857 1.175930482639174 1.179247641507075 1.182555495526531 ... 1.185854122563142 1.189143599402528 1.192424001771182 1.195695404356812 ... 1.198957880828180 1.202211503854459 1.205456345124119 1.208692475363357 ... 1.211919964354082 1.215138880951474 1.218349293101120 1.221551267855754 ... 1.224744871391589 1.227930169024281 1.231107225224513 1.234276103633219 ... 1.237436867076458 1.240589577579950 1.243734296383275 1.246871083953750 ... 1.250000000000000 1.253121103485214 1.256234452640111 1.259340104975618 ... 1.262438117295260 1.265528545707287 1.268611445636527 1.271686871835988 ... 1.274754878398196 1.277815518766305 1.280868845744950 1.283914911510884 ... 1.286953767623375 1.289985465034393 1.293010054098575 1.296027584582983 ... 1.299038105676658 1.302041665999979 1.305038313613819 1.308028096028522 ... 1.311011060212689 1.313987252601790 1.316956719106592 1.319919505121430 ... 1.322875655532295 1.325825214724777 1.328768226591831 1.331704734541407 ... 1.334634781503914 1.337558409939543 1.340475661845451 1.343386578762792 ... 1.346291201783626 1.349189571557681 1.352081728298996 1.354967711792425 ... 1.357847561400027 1.360721316067327 1.363589014329464 1.366450694317215 ... 1.369306393762915 1.372156150006259 1.375000000000000 1.377837980315538 ... 1.380670127148408 1.383496476323666 1.386317063301177 1.389131923180804 ... 1.391941090707505 1.394744600276337 1.397542485937369 1.400334781400505 ... 1.403121520040228 1.405902734900249 1.408678458698081 1.411448723829527 ... 1.414213562373095]; % Cast to fixed point with the most accurate rounding method WL = 4*B; % Word length FL = 2*B; % Fraction length SQRTLUT = fi(sqrt_table, 1, WL, FL, 'RoundingMethod','Nearest'); % Set fimath for the most efficient math operations F = fimath('OverflowAction','Wrap',... 'RoundingMethod','Floor',... 'SumMode','KeepLSB',... 'SumWordLength',WL,... 'ProductMode','KeepLSB',... 'ProductWordLength',WL); SQRTLUT = setfimath(SQRTLUT, F); end
u = fi(linspace(0,128,1000),0,16,12); y = fi_sqrtlookup_8_bit_byte(u); y_expected = sqrt(double(u));
clf subplot(211) plot(u,y,u,y_expected) legend('Output','Expected output','Location','Best') subplot(212) plot(u,double(y)-y_expected,'r') legend('Error') figure(gcf)
Очистка
Восстановите исходное состояние.
set(0, 'format', originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);