В этом примере показано, как соответствовать нелинейной функции к данным с помощью нескольких алгоритмов Optimization Toolbox™.
Рассмотрите следующие данные:
Data = ...
[0.0000 5.8955
0.1000 3.5639
0.2000 2.5173
0.3000 1.9790
0.4000 1.8990
0.5000 1.3938
0.6000 1.1359
0.7000 1.0096
0.8000 1.0343
0.9000 0.8435
1.0000 0.6856
1.1000 0.6100
1.2000 0.5392
1.3000 0.3946
1.4000 0.3903
1.5000 0.5474
1.6000 0.3459
1.7000 0.1370
1.8000 0.2211
1.9000 0.1704
2.0000 0.2636];
Давайте построим эти точки данных.
t = Data(:,1); y = Data(:,2); % axis([0 2 -0.5 6]) % hold on plot(t,y,'ro') title('Data points')
% hold off
Мы хотели бы соответствовать функции
y = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t)
к данным.
lsqcurvefit
lsqcurvefit
функция решает этот тип проблемы легко.
Чтобы начаться, задайте параметры в терминах одной переменной x:
x(1) = c(1)
x(2) = lam(1)
x(3) = c(2)
x(4) = lam(2)
Затем задайте кривую как функцию параметров x и данных t:
F = @(x,xdata)x(1)*exp(-x(2)*xdata) + x(3)*exp(-x(4)*xdata);
Мы произвольно устанавливаем нашу начальную точку x0 можно следующим образом: c (1) = 1, убегите (1) = 1, c (2) = 1, убегите (2) = 0:
x0 = [1 1 1 0];
Мы запускаем решатель и строим получившуюся подгонку.
[x,resnorm,~,exitflag,output] = lsqcurvefit(F,x0,t,y)
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
x = 1×4
3.0068 10.5869 2.8891 1.4003
resnorm = 0.1477
exitflag = 3
output = struct with fields:
firstorderopt: 7.8876e-06
iterations: 6
funcCount: 35
cgiterations: 0
algorithm: 'trust-region-reflective'
stepsize: 0.0096
message: '...'
hold on plot(t,F(x,t)) hold off
fminunc
Решать задачу с помощью fminunc
, мы устанавливаем целевую функцию как сумму квадратов остаточных значений.
Fsumsquares = @(x)sum((F(x,t) - y).^2); opts = optimoptions('fminunc','Algorithm','quasi-newton'); [xunc,ressquared,eflag,outputu] = ... fminunc(Fsumsquares,x0,opts)
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
xunc = 1×4
2.8890 1.4003 3.0069 10.5862
ressquared = 0.1477
eflag = 1
outputu = struct with fields:
iterations: 30
funcCount: 185
stepsize: 0.0017
lssteplength: 1
firstorderopt: 2.9662e-05
algorithm: 'quasi-newton'
message: '...'
Заметьте тот fminunc
найденный тем же решением как lsqcurvefit
, но взял намного больше функциональных оценок, чтобы сделать так. Параметры для fminunc
находятся в противоположном порядке как те для lsqcurvefit
; большее бегство является бегством (2), не убегают (1). Это не удивительно, порядок переменных произволен.
fprintf(['There were %d iterations using fminunc,' ... ' and %d using lsqcurvefit.\n'], ... outputu.iterations,output.iterations)
There were 30 iterations using fminunc, and 6 using lsqcurvefit.
fprintf(['There were %d function evaluations using fminunc,' ... ' and %d using lsqcurvefit.'], ... outputu.funcCount,output.funcCount)
There were 185 function evaluations using fminunc, and 35 using lsqcurvefit.
Заметьте, что подходящая проблема линейна в параметрах c (1) и c (2). Это означает для любых значений бегства (1) и бегства (2), мы можем использовать оператор обратной косой черты, чтобы найти значения c (1) и c (2), которые решают задачу наименьших квадратов.
Мы теперь переделываем проблему как двумерную проблему, ища оптимальные значения бегства (1) и убегаем (2). Значения c (1) и c (2) вычисляются на каждом шаге с помощью оператора обратной косой черты, аналогичного описанному выше.
type fitvector
function yEst = fitvector(lam,xdata,ydata) %FITVECTOR Used by DATDEMO to return value of fitting function. % yEst = FITVECTOR(lam,xdata) returns the value of the fitting function, y % (defined below), at the data points xdata with parameters set to lam. % yEst is returned as a N-by-1 column vector, where N is the number of % data points. % % FITVECTOR assumes the fitting function, y, takes the form % % y = c(1)*exp(-lam(1)*t) + ... + c(n)*exp(-lam(n)*t) % % with n linear parameters c, and n nonlinear parameters lam. % % To solve for the linear parameters c, we build a matrix A % where the j-th column of A is exp(-lam(j)*xdata) (xdata is a vector). % Then we solve A*c = ydata for the linear least-squares solution c, % where ydata is the observed values of y. A = zeros(length(xdata),length(lam)); % build A matrix for j = 1:length(lam) A(:,j) = exp(-lam(j)*xdata); end c = A\ydata; % solve A*c = y for linear parameters c yEst = A*c; % return the estimated response based on c
Решите задачу с помощью lsqcurvefit
, запуск с двумерного начального бегства точки (1), убегите (2):
x02 = [1 0]; F2 = @(x,t) fitvector(x,t,y); [x2,resnorm2,~,exitflag2,output2] = lsqcurvefit(F2,x02,t,y)
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
x2 = 1×2
10.5861 1.4003
resnorm2 = 0.1477
exitflag2 = 3
output2 = struct with fields:
firstorderopt: 4.4071e-06
iterations: 10
funcCount: 33
cgiterations: 0
algorithm: 'trust-region-reflective'
stepsize: 0.0080
message: '...'
КПД двумерного решения похож на то из четырехмерного решения:
fprintf(['There were %d function evaluations using the 2-d ' ... 'formulation, and %d using the 4-d formulation.'], ... output2.funcCount,output.funcCount)
There were 33 function evaluations using the 2-d formulation, and 35 using the 4-d formulation.
Выбор плохой начальной точки для исходной проблемы с четырьмя параметрами приводит к локальному решению, которое не является глобальной переменной. Выбор начальной точки с тем же плохим бегством (1) и бегством (2) значения для проблемы 2D параметра разделения приводит к глобальному решению. Чтобы показать это, мы повторно выполняем исходную проблему со стартовой точкой, которая приводит к относительно плохому локальному решению, и сравните получившуюся подгонку с глобальным решением.
x0bad = [5 1 1 0];
[xbad,resnormbad,~,exitflagbad,outputbad] = ...
lsqcurvefit(F,x0bad,t,y)
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
xbad = 1×4
-24.6714 2.4788 29.7951 2.4787
resnormbad = 2.2173
exitflagbad = 3
outputbad = struct with fields:
firstorderopt: 5.1531e-05
iterations: 38
funcCount: 195
cgiterations: 0
algorithm: 'trust-region-reflective'
stepsize: 2.6834e-04
message: '...'
hold on plot(t,F(xbad,t),'g') legend('Data','Global fit','Bad local fit','Location','NE') hold off
fprintf(['The residual norm at the good ending point is %f,' ... ' and the residual norm at the bad ending point is %f.'], ... resnorm,resnormbad)
The residual norm at the good ending point is 0.147723, and the residual norm at the bad ending point is 2.217300.