Конструктор полиномов Лорана
P = laurpoly(C,d)
P = laurpoly(C,'dmin',d)
P = laurpoly(C,'dmax',d)
P = laurpoly(C,d)
P = laurpoly(C,d) возвращает объект полинома Лорана. C вектор, элементы которого являются коэффициентами полиномиального P и d самая высокая степень одночленов P.
Если m длина векторного CP представляет следующий полином Лорана:
P(z) = C(1)*z^d + C(2)*z^(d-1) + ... + C(m)*z^(d-m+1)
P = laurpoly(C,'dmin',d) задает самую низкую степень вместо самой высокой степени одночленов P. Соответствующий выход P представляет следующий полином Лорана:
P(z) = C(1)*z^(d+m-1) + ... + C(m-1)*z^(d+1) + C(m)*z^d
P = laurpoly(C,'dmax',d) эквивалентно P = laurpoly(C,d).
% Define Laurent polynomials. P = laurpoly([1:3],2); P = laurpoly([1:3],'dmax',2) P(z) = + z^(+2) + 2*z^(+1) + 3 P = laurpoly([1:3],'dmin',2) P(z) = + z^(+4) + 2*z^(+3) + 3*z^(+2) % Calculus on Laurent polynomials. Z = laurpoly(1,1) Z(z) = z^(+1) Q = Z*P Q(z) = + z^(+5) + 2*z^(+4) + 3*z^(+3) R = Z^1 - Z^-1 R(z) = + z^(+1) - z^(-1)
Странг, Г.; Т. Нгуен (1996), Вейвлеты и наборы фильтров, Wellesley-Кембриджское Нажатие.
Sweldens, W. (1998), “Подъем Схемы: Конструкция Второго поколения Вейвлетов”, SIAM J. Математика. Анальный., 29 (2), стр 511–546.