mcc
Рабочий процесс командыПоддерживаемая платформа: Linux® только.
Этот пример показывает вам, как использовать mcc
команда, чтобы создать развертываемый архив, состоящий из map и reduce функций MATLAB® и затем передать развертываемый архив в качестве аргумента полезной нагрузки к заданию, представленному кластеру Hadoop®.
Цель: Вычислите максимальную задержку прибытия авиакомпании от данного набора данных.
Набор данных: | airlinesmall.csv |
Описание: |
Отъезд авиакомпании и информация о прибытии от 1987-2008. |
Местоположение : | /usr/local/MATLAB/R2020a/toolbox/matlab/demos |
Когда по сравнению с рабочим процессом приложения Hadoop Compiler, этот рабочий процесс требует явного создания файла настроек Hadoop. Последуйте примеру для деталей.
Предпосылки
Запустите этот пример путем создания новой папки работы, которая отображается к пути поиска файлов MATLAB.
Прежде чем стартовый MATLAB, на терминале, установил переменную окружения HADOOP_PREFIX
указать на папку установки Hadoop. Например:
Shell | Команда |
---|---|
csh / tcsh | % setenv HADOOP_PREFIX /usr/lib/hadoop |
удар | $ export HADOOP_PREFIX=/usr/lib/hadoop |
Этот пример использует /usr/lib/hadoop
как директория, где Hadoop установлен. Ваша директория установки Hadoop, возможно, отличающаяся.
Если вы забываете устанавливать HADOOP_PREFIX
переменная окружения до стартового MATLAB, набор это использование функции MATLAB setenv
в командной строке MATLAB, как только вы запускаете MATLAB. Например:
setenv('HADOOP_PREFIX','/usr/lib/hadoop')
Установите MATLAB Runtime в папке, которая доступна каждым узлом рабочего в кластере Hadoop. Этот пример использует /usr/local/MATLAB/MATLAB_Runtime/v98
как местоположение папки MATLAB Runtime.
Если у вас нет MATLAB Runtime, можно загрузить его с веб-сайта в: https://www.mathworks.com/products/compiler/mcr
.
Для получения информации о номерах версий MATLAB Runtime соответствующие релизы MATLAB см. этот список.
Скопируйте функцию карты maxArrivalDelayMapper.m
от /usr/local/MATLAB/R2020a/toolbox/matlab/demos
папка к папке работы.
Для получения дополнительной информации смотрите Запись Функция Карты (MATLAB).
Скопируйте уменьшать функциональный maxArrivalDelayReducer.m
от
папка к папке работы.matlabroot
/toolbox/matlab/demos
Для получения дополнительной информации смотрите Запись Уменьшать Функция (MATLAB).
Создайте директорию,/user/
на HDFS™ и копии файл <username>
/ наборы данныхairlinesmall.csv
к той директории. Здесь
относится к вашему имени пользователя в HDFS. <username>
$ ./hadoop fs -copyFromLocal airlinesmall.csv hdfs://host:54310/user/<username>
/datasets
Процедура
Запустите MATLAB и проверьте что HADOOP_PREFIX
переменная окружения была установлена. В командной строке введите:
>> getenv('HADOOP_PREFIX')
Если ans
пусто, рассмотрите раздел Prerequisites выше, чтобы видеть, как можно установить HADOOP_PREFIX
переменная окружения.
Создание Datastore
к файлу airlinesmall.csv
и сохраните его в .mat
файл. Этот datastore
объект предназначается, чтобы получить структуру вашего фактического набора данных на HDFS.
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',... 'SelectedVariableNames','ArrDelay','ReadSize',1000); save('infoAboutDataset.mat','ds')
В большинстве случаев вы начнетесь путем работы над набором данных небольшой выборки, находящимся на локальной машине, которая является представительной для фактического набора данных на кластере. Этот демонстрационный набор данных имеет ту же структуру и переменные как фактический набор данных на кластере. Путем создания datastore
возразите против набора данных, находящегося на вашей локальной машине, вы берете снимок состояния той структуры. При наличии доступа к этому datastore
объект, задание Hadoop, выполняющееся на кластере, будет знать, как получить доступ и обработать фактический набор данных, находящийся на HDFS.
В этом примере демонстрационный (локальный) набор данных и фактический набор данных на HDFS являются тем же самым.
Создайте конфигурационный файл (config.txt
) это задает входной тип данных, формат данных, заданных datastore
созданный на предыдущем шаге, выходной тип данных, имя функции карты и имя уменьшают функцию.
mw.ds.in.type = tabulartext mw.ds.in.format = infoAboutDataset.mat mw.ds.out.type = keyvalue mw.mapper = maxArrivalDelayMapper mw.reducer = maxArrivalDelayReducer
Используйте mcc
команда с -m
отметьте, чтобы создать развертываемый архив. -m
флаг создает стандартный исполняемый файл, который может быть запущен из командной строки. Однако mcc
команда не может группировать результаты в инсталляторе. Команда должна быть введена как одна строка.
mcc -H -W 'hadoop:maxArrivalDelay,CONFIG:config.txt' maxArrivalDelayMapper.m maxArrivalDelayReducer.m -a infoAboutDataset.mat
Для получения дополнительной информации смотрите mcc
.
MATLAB Compiler™ создает сценарий оболочки run_maxarrivaldelay.sh
, развертываемый архив airlinesmall.ctf
, и файл журнала mccExcludedfiles.log
.
Включите развертываемый архив, содержащий map и reduce функции MATLAB в задание mapreduce Hadoop от интерпретатора Linux с помощью следующей команды:
$ hadoop \
jar /usr/local/MATLAB/MATLAB_Runtime/v98/toolbox/mlhadoop/jar/a2.2.0/mwmapreduce.jar \
com.mathworks.hadoop.MWMapReduceDriver \
-D mw.mcrroot=/usr/local/MATLAB/MATLAB_Runtime/v98 \
maxArrivalDelay.ctf \
hdfs://host:54310/user/<username>
/datasets/airlinesmall.csv \
hdfs://host:54310/user/<username>
/results
Поочередно, можно включить развертываемый архив, содержащий map и reduce функции MATLAB в задание mapreduce Hadoop с помощью сценария оболочки, сгенерированного приложением Hadoop Compiler. В Linux интерпретатор вводят следующую команду:
$ ./run_maxArrivalDelay.sh \
/usr/local/MATLAB/MATLAB_Runtime/v98 \
-D mw.mcrroot=/usr/local/MATLAB/MATLAB_Runtime/v98 \
hdfs://host:54310/user/username/datasets/airlinesmall.csv \
hdfs://host:54310/user/<username>
/results
Чтобы исследовать результаты, переключитесь на рабочий стол MATLAB и создайте datastore
к результатам на HDFS. Можно затем просмотреть результаты с помощью read
метод.
d = datastore('hdfs:///user/<username>/results/part*');
read(d)
ans = Key Value _________________ ______ 'MaxArrivalDelay' [1014]
Другие примеры map
и reduce
функции доступны в toolbox/matlab/demos
папка. Можно использовать другие примеры, чтобы моделировать подобные развертываемые архивы, которые запускаются против Hadoop. Для получения дополнительной информации смотрите Сборку Эффективные Алгоритмы с MapReduce (MATLAB).
KeyValueDatastore
| TabularTextDatastore
| datastore
| deploytool
| mcc