Flexible T Beam

T-луч со свойствами упругости для деформации

  • Библиотека:
  • Simscape / Мультитело / Элементы Тела / Гибкие Тела / Лучи

Описание

Блок Flexible T Beam моделирует тонкий луч с T-образным поперечным сечением, также известным как T-луч. T-луч состоит из одной горизонтальной составляющей, известной как фланца и одну вертикальную составляющую, которая называется сетью. T-луч может иметь маленькие и линейные деформации. Эти деформации включают расширение, изгиб и скрученность. Блок вычисляет луч перекрестные частные свойства, такие как осевые, изгибные, и жесткости при кручении, на основе геометрии и свойств материала, которые вы задаете.

Геометрия T-луча является экструзией своего поперечного сечения. Поперечное сечение луча, заданное в xy-плоскости, вытесняется вдоль оси z. Чтобы задать поперечное сечение, можно задать его размерности в разделе Geometry диалогового окна блока. Рисунок показывает T-луч и его поперечное сечение. Система координат луча расположена в средней точке перекрестной линии середины плоскостей сети и фланца.

Гибкие лучи приняты, чтобы быть сделанными из гомогенного, изотропного, и линейно эластичного материала. Можно задать плотность луча, модуль Янга и отношение Пуассона или сдвинуть модуль в разделе Stiffness и Inertia диалогового окна блока. Кроме того, этот блок поддерживает два метода затухания и опцию дискретизации, чтобы увеличить точность моделирования. Для получения дополнительной информации см. Обзор Гибких Лучей.

Порты

Система координат

развернуть все

Система координат, которой можно соединить луч в модели. В недеформированной настройке эта система координат в половине длины луча в-z направлении относительно источника системы координат локальной ссылки.

Система координат, которой можно соединить луч в модели. В недеформированной настройке эта система координат в половине длины луча в +z направлении относительно источника системы координат локальной ссылки.

Параметры

развернуть все

Геометрия

Расстояние от главной поверхности фланца к заднему концу сети. End-to-End Height также известен как глубину луча.

Примечание

End-to-End Height должен быть больше, чем Flange Thickness.

Расстояние между двумя поверхностями сети.

Примечание

Web Thickness должен быть меньшим, чем Flange Width.

Расстояние между двумя концами фланца.

Расстояние между двумя поверхностями фланца.

Длина экструзии луча. Луч моделируется путем вытеснения заданного поперечного сечения вдоль z - ось системы координат локальной ссылки. Экструзия симметрична о xy - плоскости с половиной луча, вытесняемого в обратном направлении z - ось и половина в положительном направлении.

Жесткость и инерция

Масса на единичный объем материала — принятый здесь, чтобы быть распределенным однородно в луче. Значение по умолчанию соответствует алюминию.

Свойства упругости, в терминах которых можно параметрировать луч. Эти свойства обычно доступны от баз данных материалов.

Модуль молодежи эластичности луча. Чем больше его значение, тем более сильный сопротивление изгибу и осевой деформации. Значение по умолчанию соответствует алюминию.

Отношение Пуассона луча. Заданное значение должно быть больше или быть равно 0 и меньший, чем 0.5. Значение по умолчанию соответствует алюминию.

Сдвиньте модуль (или модуль сдвига) луча. Чем больше его значение, тем более сильный сопротивление крутильной деформации. Значение по умолчанию соответствует алюминию.

Расчетные значения массы и жесткости частные свойства луча. Нажмите Update, чтобы вычислить и отобразить те значения.

Данные свойства включают Centroid и Shear Center. Центроид является точкой, в которой осевое усилие расширяет (или контракты) луч без изгиба. Центр сдвига то, что, через который поперечная сила должна передать, чтобы изогнуть луч без скручивания.

Жесткость частные свойства вычисляется можно следующим образом:

  • Axial Rigidity: E A

  • Flexural Rigidity: [E I x, E I y]

  • Cross Flexural Rigidity: E I xy

  • Torsional Rigidity: G J

Массовые частные свойства вычисляются можно следующим образом:

  • Mass per Unit Length: ρ A

  • Mass Moment of Inertia Density: [ρ I x, ρ I y]

  • Mass Product of Inertia Density: ρ I xy

  • Polar Mass Moment of Inertia Density: ρ I p

Параметры уравнения включают:

  • A Площадь поперечного сечения

  • ρ — Плотность

  • E Модуль молодежи

  • G Сдвиньте модуль

  • J Крутильная константа (полученный из решения Святого-Venant's дифференциального уравнения с частными производными деформирования)

Остающиеся параметры являются соответствующими моментами области луча. Они вычисляются об осях центроидальной системы координат — один выровненный с системой координат локальной ссылки, но расположились с ее источником в центроиде. Моменты области:

  • I x, I y — Центроидальные вторые моменты области:

    [Ix,Iy]=[A(yyc)2dA,A(xxc)2dA],

  • I xy — Центроидальный момент продукта области:

    Ixy=A(xxc)(yyc)dA,

  • I p — Центроидальный полярный момент области:

    IP=Ix+Iy,

где x c и y c являются координатами центроида.

Затухание

Затухание метода, чтобы примениться к лучу:

  • Выберите None смоделировать незатухающие лучи.

  • Выберите Proportional применять пропорциональное (или Рейли) затухание метода. Этот метод задает ослабляющую матрицу [C] как линейная комбинация большой матрицы [M] и матрица жесткости [K]:

    [C]=α[M]+β[K],

    где α и β являются скалярными коэффициентами.

  • Выберите Uniform Modal применять универсальный модальный метод затухания. Этот метод применяет один коэффициент затухания ко всем режимам вибрации луча. Чем больше значение, тем затухают более быстрые колебания.

Коэффициент, α, большой матрицы. Этот параметр задает затухание, пропорциональное большой матрице [M].

Зависимости

Чтобы включить этот параметр, установите Type на Proportional.

Коэффициент, β, матрицы жесткости. Этот параметр задает затухание, пропорциональное матрице жесткости [K].

Зависимости

Чтобы включить этот параметр, установите Type на Proportional.

Коэффициент затухания, ζ, применился ко всем режимам вибрации луча в универсальной модальной модели затухания. Чем больше значение, тем быстрее излучают затухание колебаний.

  • Используйте ζ = 0, чтобы смоделировать незатухающие лучи.

  • Используйте ζ <1 к модели underdamped лучи.

  • Используйте ζ = 1, чтобы смоделировать критически ослабленные лучи.

  • Используйте ζ> 1 к сверхослабленным лучам модели.

Зависимости

Чтобы включить этот параметр, установите Type на Uniform Modal.

Типы данных: double

Дискретизация

Количество конечных элементов в модели луча. Увеличение числа элементов всегда улучшает точность симуляции. Но практически, в какой-то момент, увеличение точности незначительно, когда существует много элементов. Кроме того, более высокое число элементов увеличивает вычислительную стоимость и замедляет скорость симуляции.

Графический

Выбор диаграммы используется в визуализации луча. Диаграмма является по умолчанию геометрией, заданной для луча. Измените этот параметр в None устранить этот луч в целом из визуализации модели.

Параметризация для определения визуальных свойств. Выберите Simple задавать цвет и непрозрачность. Выберите Advanced добавить зеркальные подсветки, окружающие тени и эффекты самоосвещения.

Цветной вектор RGB с красным (R), зеленый (G), и синий (B), окрашивает суммы заданными по шкале 0–1. Палитра цветов предоставляет альтернативе интерактивные средние значения определения цвета.

Зависимости

Чтобы включить этот параметр, установите:

  1. Type к From Geometry.

  2. Visual Properties к Simple.

Графическая непрозрачность задана по шкале 0–1. Непрозрачность 0 соответствует абсолютно прозрачной графике и непрозрачности 1 к абсолютно непрозрачной диаграмме.

Зависимости

Чтобы включить этот параметр, установите:

  1. Type к From Geometry.

  2. Visual Properties к Simple.

Истинный цвет под прямым белым светом, заданным как [R, G, B] или [R, G, B] вектор по шкале 0–1. Дополнительный четвертый элемент задает цветную непрозрачность также по шкале 0–1. Исключение элемента непрозрачности эквивалентно определению значения 1.

Зависимости

Чтобы включить этот параметр, установите:

  1. Type к From Geometry.

  2. Visual Properties к Advanced.

Цвет зеркальных подсветок, заданных как [R, G, B] или [R, G, B] вектор по шкале 0–1. Дополнительный четвертый элемент задает цветную непрозрачность. Исключение элемента непрозрачности эквивалентно определению значения 1.

Зависимости

Чтобы включить этот параметр, установите:

  1. Type к From Geometry.

  2. Visual Properties к Advanced.

Цвет зон молчания в рассеянном рассеянном свете в виде [R, G, B] или [R, G, B] вектор по шкале 0–1. Дополнительный четвертый элемент задает цветную непрозрачность. Исключение элемента непрозрачности эквивалентно определению значения 1.

Зависимости

Чтобы включить этот параметр, установите:

  1. Type к From Geometry.

  2. Visual Properties к Advanced.

Поверхностный цвет из-за сам освещение в виде [R, G, B] или [R, G, B] вектор по шкале 0–1. Дополнительный четвертый элемент задает цветную непрозрачность. Исключение элемента непрозрачности эквивалентно определению значения 1.

Зависимости

Чтобы включить этот параметр, установите:

  1. Type к From Geometry.

  2. Visual Properties к Advanced.

Резкость зеркальных легких отражений в виде скалярного номера по шкале 0–128. Увеличьте значение блеска для меньших но более резких подсветок. Уменьшите значение для больших но более сглаженных подсветок.

Зависимости

Чтобы включить этот параметр, установите:

  1. Type к From Geometry.

  2. Visual Properties к Advanced.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Введенный в R2020a