Контроллер магнитной левитации, настраивающийся

В этом примере показано, как использовать числовую оптимизацию для настройки параметров контроллера нелинейной системы. В этом примере мы моделируем систему CE 152 Магнитной левитации, где контроллер используется, чтобы расположить свободно поднимающийся шар в магнитное поле. Управляющая структура для этой модели фиксируется, и необходимая производительность контроллера может быть задана в терминах идеализированного ответа времени.

Теорема Ирншоу

Теорема Ирншоу доказала, что не возможно достигнуть устойчивого поднятия с помощью статических, макроскопических, классических электромагнитных полей. Однако система CE 152 работает вокруг этого путем создания потенциала хорошо вокруг точки, в которой шар должен быть приостановлен, таким образом, создав силу незакона обратных квадратов. Это достигается индуктивной обмоткой, которая генерирует время, варьируясь электромагнитное поле. Электромагнитным полем управляют с помощью обратной связи, чтобы сохранить шар в необходимом местоположении.

open_system('maglev_demo')

Описание модели

Система магнитной левитации является нелинейной динамической системой с одним входом и одним выходом. Дважды кликните Magnetic Levitation Plant Model открыть эту подсистему. Входное напряжение применяется к обмотке, которая создает электромагнитное поле. Выходное напряжение измеряется получателем IR и представляет положение шара в магнитном поле. Схема ниже обрисовывает в общих чертах эту систему.

Физическая система состоит из шара (с массой 0,00837 кг), который находится под влиянием трех сил:

  • Магнитное поле производится индуктивной обмоткой. Это моделируется Power amplifier and coil блокируйтесь в модели Simulink®. Вход к индуктору является сигналом напряжения и выходом ток. Сила от обмотки зависит от квадрата тока, воздушного зазора между обмоткой и шаром и физическими свойствами шара. Это производит восходящую действующую силу на шаре.

  • Гравитационная сила, действующая вниз

  • Сила затухания, которая действует в направлении напротив скорости в любой момент времени

Эти три силы вызывают получившееся движение шара и моделируются в Simulink как показано.

open_system('maglev_demo/Magnetic Levitation Plant Model')

Нелинейность, являющаяся результатом насыщения обмотки и изменений в динамике вне пределов магнитного поля, также моделируется в Модели Simulink. Как сила от обмоточных затуханий согласно закону обратных квадратов большие напряжения требуются далее, шар от обмотки. Управляющий сигнал масштабируется, чтобы составлять это, и масштабирование включено в блоки масштабирования Управляющего сигнала.

Управляйте описанием проблемы

Требование для контроллера - то, что это может расположить шар в любом произвольном местоположении в магнитном поле и что это перемещает шар от одного положения до другого. Эти требования получены путем размещения границ переходного процесса на измерении положения. В частности мы требуем следующих ограничений на шар:

  • Ограничение положения: в 20% желаемого положения меньше чем за 0,5 секунды

  • Ограничение Времени урегулирования: в 2% желаемого положения в течение 1,5 секунд

Чтобы удовлетворить требования управления, мы реализуем контроллер Пропорциональной Интегральной Производной (PID). Для удобства диспетчер использует нормированное измерение положения с диапазоном от 0 до 1, представляя самые нижние и самые верхние положения шара соответственно.

Simulink® Design Optimization™ и числовая оптимизация идеально подходят настраивать коэффициенты ПИДа потому что:

  • Системные движущие силы являются достаточно комплексными, чтобы потребовать усилия и время для анализа, если мы приближаемся к проблеме с помощью обычных методов системы управления.

  • Структура контроллера фиксируется

  • У нас есть знание переходного процесса, которого мы требуем от системы.

Устанавливание ограничительных значений

Учитывая характеристику переходного процесса мы желаем, просто задать верхние и нижние границы ответа. Дважды кликните Position Constraint блокируйтесь в Magnetic Levitation Plant Model подсистема, чтобы просмотреть ограничения на положение шара. Ограничительные линии могут быть перемещены с помощью мыши.

Можно запустить Response Optimization Tool с помощью меню Apps в панели инструментов Simulink или sdotool команда в MATLAB. Можно запустить предварительно сконфигурированную задачу оптимизации в ответ Инструмент Оптимизации путем открытия сначала модели и путем двойного клика на оранжевом блоке в нижней части модели. От Response Optimization Tool нажмите кнопку Plot Model Response, чтобы симулировать модель и показать, как хорошо первоначальный проект удовлетворяет конструктивным требованиям.

Определение настроенных параметров

Мы выбираем параметры ПИД-регулятора, чтобы настроиться путем открытия Design Variables редактор, как показано ниже

Выполнение оптимизации

После определения параметров оптимизации и необходимого переходного процесса ограничивает, мы запускаем оптимизацию путем нажатия кнопки Optimize от Response Optimization Tool. Во время оптимизации графики обновляются с положением шара для каждой итерации, и темная кривая показывает, что финал оптимизировал траекторию шара (как показано ниже).

Проверка результатов

Если мы завершаем оптимизацию, важно подтвердить результаты против других размеров шага. Успешная оптимизация параметров управления должна смочь обеспечить хорошее управление для всех размеров шагов близко к настроенному размеру шага 1. Размеры шага от.7 до 1 должны быть протестированы, чтобы подтвердить производительность диспетчера. Следующий график показывает ответ на вход шага от 0 до 0,85 в 0,1 секунды.

Заключение

Шаг верификации показывает, что производительность диспетчера удовлетворяет заданным требованиям, и настроенные значения параметров подходят для управления. Настроенные параметры могли использоваться, чтобы обеспечить базовую производительность, с которой другие схемы управления могут быть сравнены, или базовая линия для контроллеров для различных операционных областей.

% Close the model
bdclose('maglev_demo')