Предскажите ответы с помощью дерева регрессии
предсказывает значения ответа с дополнительными опциями, заданными одним или несколькими Yfit = predict(Mdl,X,Name,Value)Name,Value парные аргументы. Например, можно задать, чтобы сократить Mdl к конкретному уровню прежде, чем предсказать ответы.
Mdl — Обученное дерево регрессииRegressionTree объект модели | CompactRegressionTree объект моделиОбученное дерево классификации в виде RegressionTree или CompactRegressionTree объект модели. Таким образом, Mdl обученная модель классификации, возвращенная fitrtree или compact.
X — Данные о предикторе, которые будут классифицированыДанные о предикторе, которые будут классифицированы в виде числовой матрицы или таблицы.
Каждая строка X соответствует одному наблюдению, и каждый столбец соответствует одной переменной.
Для числовой матрицы:
Переменные, составляющие столбцы X должен иметь тот же порядок как переменные предикторы, которые обучили Mdl.
Если вы обучили Mdl с помощью таблицы (например, Tbl), затем X может быть числовая матрица если Tbl содержит все числовые переменные предикторы. Обрабатывать числовые предикторы в Tbl как категориальные во время обучения, идентифицируйте категориальные предикторы с помощью CategoricalPredictors аргумент пары "имя-значение" fitrtree. Если Tbl содержит неоднородные переменные предикторы (например, типы числовых и категориальных данных) и X числовая матрица, затем predict выдает ошибку.
Для таблицы:
predict не поддерживает многостолбцовые переменные и массивы ячеек кроме массивов ячеек из символьных векторов.
Если вы обучили Mdl с помощью таблицы (например, Tbl), затем все переменные предикторы в X должен иметь те же имена переменных и типы данных как те, которые обучили Mdl (сохраненный в Mdl.PredictorNames). Однако порядок следования столбцов X не должен соответствовать порядку следования столбцов Tbltbl и X может содержать дополнительные переменные (переменные отклика, веса наблюдения, и т.д.), но predict игнорирует их.
Если вы обучили Mdl с помощью числовой матрицы затем предиктор называет в Mdl.PredictorNames и соответствующий переменный предиктор называет в X должно быть то же самое. Чтобы задать имена предиктора во время обучения, смотрите PredictorNames аргумент пары "имя-значение" fitrtree. Все переменные предикторы в X должны быть числовые векторы. X может содержать дополнительные переменные (переменные отклика, веса наблюдения, и т.д.), но predict игнорирует их.
Типы данных: table | double | single
Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'Subtrees' — Сокращение уровня'all'Сокращение уровня в виде разделенной запятой пары, состоящей из 'Subtrees' и вектор неотрицательных целых чисел в порядке возрастания или 'all'.
Если вы задаете вектор, то всеми элементами должен быть, по крайней мере, 0 и в большей части max(Mdl.PruneList). 0 указывает на полное, несокращенное дерево и max(Mdl.PruneList) указывает на полностью сокращенное дерево (т.е. только корневой узел).
Если вы задаете 'all', затем predict работает со всеми поддеревьями (т.е. целая последовательность сокращения). Эта спецификация эквивалентна использованию 0:max(Mdl.PruneList).
predict чернослив Mdl к каждому уровню, обозначенному в Subtrees, и затем оценивает соответствующие выходные аргументы. Размер Subtrees определяет размер некоторых выходных аргументов.
Вызвать Subtrees, свойства PruneList и PruneAlpha из Mdl mustBeNonempty. Другими словами, вырастите Mdl установкой 'Prune','on', или путем сокращения Mdl использование prune.
Пример: 'Subtrees','all'
Типы данных: single | double | char | string
Загрузите carsmall набор данных. Рассмотрите Displacement, Horsepower, и Weight как предикторы ответа MPG.
load carsmall
X = [Displacement Horsepower Weight];Вырастите дерево регрессии использование целого набора данных.
Mdl = fitrtree(X,MPG);
Предскажите MPG для автомобиля с 200 кубическими объемами двигателя дюйма, 150 лошадиных сил, и это весит 3 000 фунтов.
X0 = [200 150 3000]; MPG0 = predict(Mdl,X0)
MPG0 = 21.9375
Дерево регрессии предсказывает КПД автомобиля, чтобы быть 21,94 мили на галлон.
Эта функция полностью поддерживает "высокие" массивы. Можно использовать модели, обученные или на или на высоких данных в оперативной памяти с этой функцией.
Для получения дополнительной информации смотрите Длинные массивы (MATLAB).
Указания и ограничения по применению:
Можно сгенерировать код C/C++ для обоих predict и update при помощи кодера configurer. Или, сгенерируйте код только для predict при помощи saveLearnerForCoder, loadLearnerForCoder, и codegen.
Генерация кода для predict и update — Создайте кодер configurer при помощи learnerCoderConfigurer и затем сгенерируйте код при помощи generateCode. Затем можно обновить параметры модели в сгенерированном коде, не имея необходимость регенерировать код.
Генерация кода для predict — Сохраните обученную модель при помощи saveLearnerForCoder. Задайте функцию точки входа, которая загружает сохраненную модель при помощи loadLearnerForCoder и вызывает predict функция. Затем используйте codegen сгенерировать код для функции точки входа.
Можно также сгенерировать фиксированную точку код C/C++ для predict. Генерация фиксированной точки требует дополнительного шага, который задает типы данных с фиксированной точкой переменных, требуемых для предсказания. Создайте структуру типа данных с фиксированной точкой при помощи функции типа данных, сгенерированной generateLearnerDataTypeFcn, и используйте структуру в качестве входного параметра loadLearnerForCoder в функции точки входа. При генерации фиксированной точки код C/C++ требует MATLAB® Coder™ и Fixed-Point Designer™.
Эта таблица содержит примечания об аргументах predict. Аргументы, не включенные в эту таблицу, полностью поддержаны.
| Аргумент | Примечания и ограничения |
|---|---|
Mdl | Для указаний и ограничений по применению объекта модели смотрите
Генерацию кода |
X |
|
Subtrees |
|
Для получения дополнительной информации смотрите Введение в Генерацию кода.
CompactRegressionTree | RegressionTree | compact | fitrtree | loss
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.