Модель линейной регрессии для высоко-размерных данных
RegressionLinear обученный линейный объект модели для регрессии; линейная модель является регрессией машины опорных векторов моделью линейной регрессии или (SVM). fitrlinear соответствует RegressionLinear модель путем минимизации целевой функции с помощью методов, которые уменьшают время вычисления для высоко-размерных наборов данных (например, стохастический градиентный спуск). Потеря регрессии плюс срок регуляризации составляет целевую функцию.
В отличие от других моделей регрессии, и для экономичного использования памяти, RegressionLinear объекты модели не хранят обучающие данные. Однако они действительно хранят, например, предполагаемые линейные коэффициенты модели, оцененные коэффициенты и силу регуляризации.
Можно использовать, обучил RegressionLinear модели, чтобы предсказать ответы для новых данных. Для получения дополнительной информации смотрите predict.
Создайте RegressionLinear объект при помощи fitrlinear.
| потеря | Потеря регрессии для моделей линейной регрессии |
| предсказать | Предскажите ответ модели линейной регрессии |
| selectModels | Выберите подбиравшие упорядоченные модели линейной регрессии |
Значение. Чтобы изучить, как классы значения влияют на операции копии, смотрите Копирование Объектов (MATLAB).
RegressionPartitionedLinear | fitrlinear | plotPartialDependence | predict