В этом примере показано, как подстроить предварительно обученную сверточную нейронную сеть AlexNet, чтобы выполнить классификацию на новом наборе изображений.
AlexNet был обучен на более чем миллионе изображений и может классифицировать изображения в 1 000 категорий объектов (таких как клавиатура, кофейная кружка, карандаш и многие животные). Сеть изучила богатые представления функции для широкого спектра изображений. Сеть берет изображение в качестве входа и выводит метку для объекта в изображении вместе с вероятностями для каждой из категорий объектов.
Передача обучения обычно используется в применении глубокого обучения. Можно взять предварительно обученную сеть и использовать ее в качестве начальной точки, чтобы изучить новую задачу. Подстройка сети с передачей обучения обычно намного быстрее и легче, чем обучение сети со случайным образом инициализированными весами с нуля. Можно быстро передать изученные функции новой задаче с помощью меньшего числа учебных изображений.
Разархивируйте и загрузите новые изображения как datastore изображений. imageDatastore
автоматически помечает изображения на основе имен папок и хранит данные как ImageDatastore
объект. Datastore изображений позволяет вам сохранить большие данные изображения, включая данные, которые не умещаются в памяти, и эффективно считать пакеты изображений во время обучения сверточной нейронной сети.
unzip('logos_dataset.zip'); imds = imageDatastore('logos_dataset', ... 'IncludeSubfolders',true, ... 'LabelSource','foldernames');
Разделите данные на наборы данных обучения и валидации. Используйте 70% изображений для обучения и 30% для валидации. splitEachLabel
разделяет images
datastore в два новых хранилища данных.
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
Загрузите предварительно обученную нейронную сеть AlexNet. Если Модель Deep Learning Toolbox™ для Сети AlexNet не установлена, то программное обеспечение обеспечивает ссылку на загрузку. AlexNet обучен больше чем на одном миллионе изображений и может классифицировать изображения в 1 000 категорий объектов, таких как клавиатура, мышь, карандаш и многие животные. В результате модель изучила богатые представления функции для широкого спектра изображений.
snet = alexnet;
Используйте analyzeNetwork
отобразить интерактивную визуализацию сетевой архитектуры и подробной информации о слоях сети.
analyzeNetwork(snet)
Первый слой, входной слой для изображений, требует входных изображений размера 227 227 3, где 3 количество цветовых каналов.
inputSize = snet.Layers(1).InputSize
inputSize = 1×3
227 227 3
Последние три слоя предварительно обученной сети net
сконфигурированы для 1 000 классов. Эти три слоя должны быть подстроены для новой проблемы классификации. Извлеките все слои, кроме последних трех, от предварительно обученной сети.
layersTransfer = snet.Layers(1:end-3);
Передайте слои новой задаче классификации, заменив последние три слоя на полносвязный слой, softmax слой и классификацию выходной слой. Задайте опции нового полносвязного слоя согласно новым данным. Установите полносвязный слой иметь тот же размер как количество классов в новых данных. Чтобы учиться быстрее в новых слоях, чем в переданных слоях, увеличьте WeightLearnRateFactor
и BiasLearnRateFactor
значения полносвязного слоя.
numClasses = numel(categories(imdsTrain.Labels))
numClasses = 32
layers = [ layersTransfer fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20) softmaxLayer classificationLayer];
Сеть требует входных изображений размера 227 227 3, но изображения в хранилищах данных изображений имеют различные размеры. Используйте увеличенный datastore изображений, чтобы автоматически изменить размер учебных изображений. Задайте дополнительные операции увеличения, чтобы выполнить на учебных изображениях: случайным образом инвертируйте учебные изображения вдоль вертикальной оси, и случайным образом переведите их до 30 пикселей горизонтально и вертикально. Увеличение данных помогает препятствовать тому, чтобы сеть сверхсоответствовала и запомнила точные детали учебных изображений.
pixelRange = [-30 30]; imageAugmenter = imageDataAugmenter( ... 'RandXReflection',true, ... 'RandXTranslation',pixelRange, ... 'RandYTranslation',pixelRange); augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ... 'DataAugmentation',imageAugmenter);
Чтобы автоматически изменить размер изображений валидации, не выполняя дальнейшее увеличение данных, используйте увеличенный datastore изображений, не задавая дополнительных операций предварительной обработки.
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
Задайте опции обучения. Для передачи обучения сохраните функции от ранних слоев предварительно обученной сети (переданные веса слоя). Чтобы замедлить изучение в переданных слоях, установите начальную скорость обучения на маленькое значение. На предыдущем шаге вы увеличили факторы скорости обучения для полносвязного слоя, чтобы ускорить изучение в новых последних слоях. Эта комбинация настроек скорости обучения приводит к быстрому изучению только в новых слоях и более медленном изучении в других слоях. При использовании обучение с переносом вы не должны обучаться для как много эпох. Эпоха является полным учебным циклом на целом обучающем наборе данных. Задайте мини-пакетный размер и данные о валидации. Программное обеспечение проверяет сеть каждый ValidationFrequency
итерации во время обучения.
options = trainingOptions('sgdm', ... 'MiniBatchSize',10, ... 'MaxEpochs',6, ... 'InitialLearnRate',1e-4, ... 'Shuffle','every-epoch', ... 'ValidationData',augimdsValidation, ... 'ValidationFrequency',3, ... 'Verbose',false, ... 'Plots','training-progress');
Обучите сеть, которая состоит из переданных и новых слоев. По умолчанию, trainNetwork
использует графический процессор, если вы доступны (требует Parallel Computing Toolbox™, и CUDA® включил графический процессор с, вычисляют возможность 3.0 или выше). В противном случае это использует центральный процессор. Можно также задать среду выполнения при помощи 'ExecutionEnvironment'
аргумент пары "имя-значение" trainingOptions
.
netTransfer = trainNetwork(augimdsTrain,layers,options);