exponenta event banner

GPU Coder — Examples

Начало работы с GPU Coder

Создание ядра

Создание ядра из кода MATLAB

Симулируйте дифракционные шаблоны Используя библиотеки БПФ CUDA

Симулируйте дифракционные шаблоны Используя библиотеки БПФ CUDA

Используйте GPU Coder™, чтобы усилить библиотеку CUDA® Fast Fourier Transform (cuFFT), чтобы вычислить двумерный БПФ на графическом процессоре NVIDIA®. Двумерное преобразование Фурье используется в оптике, чтобы вычислить шаблоны дифракции далекого поля. Когда монохроматический источник света проходит через маленькую апертуру, такой как в эксперименте двойного разреза Янга, можно наблюдать эти дифракционные шаблоны. Этот пример также показывает вам, как использовать указатели графического процессора в качестве входных параметров к функции точки входа при генерации MEX CUDA, исходного кода, статических библиотек, динамических библиотек и исполняемых файлов. При помощи этой функциональности производительность сгенерированного кода улучшается путем минимизации количества вызовов cudaMemcpy в сгенерированном коде.

Глубокое обучение для GPU Coder

Генерация кода для сети от последовательности к последовательности LSTM

Генерация кода для сети от последовательности к последовательности LSTM

Демонстрирует, как сгенерировать код CUDA® для сети долгой краткосрочной памяти (LSTM). Пример генерирует приложение MEX, которое делает предсказания на каждом шаге входа timeseries. Продемонстрированы два метода: метод с помощью стандартной сети LSTM и метода, усиливающего поведение с сохранением информации той же сети LSTM. Этот пример использует данные о датчике акселерометра из смартфона, продолжил тело и делает предсказания на действии владельца. Пользовательские перемещения классифицируются в одну из пяти категорий, а именно, танца, выполнения, нахождения, положения и обхода. Пример использует предварительно обученную сеть LSTM. Для получения дополнительной информации об обучении смотрите, что Классификация Последовательностей Использует Глубокое обучение (Deep Learning Toolbox) пример от Deep Learning Toolbox™.

Генерация кода для Глубокого обучения Модель Simulink, которая Выполняет Обнаружение Маршрута и Транспортного средства

Генерация кода для Глубокого обучения Модель Simulink, которая Выполняет Обнаружение Маршрута и Транспортного средства

Разработайте приложение CUDA® из модели Simulink®, которая выполняет маршрут и сверточные нейронные сети (CNN) использования обнаружения транспортного средства. Этот пример берет системы координат видео трафика как вход, выходные параметры два контура маршрута, которые соответствуют левым и правым маршрутам автомобиля, оборудованного датчиком, и обнаруживает транспортные средства в системе координат. Этот пример использует предварительно обученную сеть обнаружения маршрута от Обнаружения Маршрута, Оптимизированного с примером GPU Coder GPU Coder Toolbox™. Для получения дополнительной информации смотрите Обнаружение Маршрута, Оптимизированное с GPU Coder. Этот пример также использует предварительно обученную сеть обнаружения транспортного средства от Обнаружения объектов Используя пример YOLO v2 Глубокого обучения Компьютерного зрения toolbox™. Для получения дополнительной информации смотрите, что Обнаружение объектов Использует Глубокое обучение (Computer Vision Toolbox) YOLO v2.

Развертывание