Системный объект: phased.URA
Пакет: поэтапный
Построение дифракционных лепестков диаграммы направленности антенной решетки
plotGratingLobeDiagram(H,FREQ)
plotGratingLobeDiagram(H,FREQ,ANGLE)
plotGratingLobeDiagram(H,FREQ,ANGLE,C)
plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0)
hPlot = plotGratingLobeDiagram(___)
plotGratingLobeDiagram(
строит скрипучую схему лепестка массива в системе координат u-v. Система object™ H
,FREQ
)H
задает массив. Аргумент FREQ
задает частоту сигнала и частоту фазовращателя. Массив, по умолчанию, управляется к азимуту на 0 ° и вертикальному изменению на 0 °.
Скрипучая схема лепестка отображает положения peaks узкополосного array pattern. Шаблон массивов зависит только от геометрии массива а не на типы элементов, которые составляют массив. Видимые и невидимые скрипучие лепестки отображены как открытые круги. Только скрипучий peaks лепестка около местоположения mainlobe показывают. Сам mainlobe отображен как заполненный круг.
plotGratingLobeDiagram(
, кроме того, задает руководящий угол массивов, H
,FREQ
,ANGLE
)ANGLE
.
plotGratingLobeDiagram(
, кроме того, задает скорость распространения H
,FREQ
,ANGLE
,C
)C
.
plotGratingLobeDiagram(
, кроме того, задает частоту фазовращателя массивов, H
,FREQ
,ANGLE
,C
,F0
)F0
, это отличается от частоты сигнала, FREQ
. Этот аргумент полезен, когда сигнал больше не удовлетворяет узкополосному предположению и, позволяет вам оценивать размер косоглазия луча.
возвращает указатель на график для любой из входных форм синтаксиса.hPlot
= plotGratingLobeDiagram(___)
|
Антенна или массив микрофона в виде Системного объекта. |
|
Частота сигнала в виде скаляра. Единицы частоты являются герц. Значения должны лечь в диапазоне, указанном свойством частоты элементов массива, содержавшихся в |
|
Руководящий угол массивов или в виде 2 1 вектора или в виде скаляра. Если Значение по умолчанию: |
|
Скорость распространения сигнала в виде скаляра. Модули являются метрами в секунду. Значение по умолчанию: Скорость света в вакууме |
|
Частота фазовращателя массива в виде скаляра. Единицы частоты являются герц, Когда этот аргумент не использован, частота фазовращателя принята, чтобы быть частотой сигнала, Значение по умолчанию: |
Пространственная субдискретизация wavefield массивом производит видимые скрипучие лепестки. Если вы думаете о wavenumber, k, как аналогичных угловой частоте, то необходимо произвести сигнал в пространственных интервалах, меньших, чем π/kmax (или λmin/2), чтобы удалить искажение. Внешний вид видимых скрипучих лепестков также известен как пространственное искажение. Переменная kmax является самым большим wavenumber значением, существующим в сигнале.
Направления максимального пространственного ответа URA определяются peaks array pattern (альтернативно названный beam pattern или array factor.) Peaks кроме основного пика лепестка называется скрипучими лепестками. Для URA шаблон массивов зависит только от wavenumber компонента wavefield в плоскости массивов (y и направления z для phased.URA
Системный объект). wavenumber компоненты связаны с направлением взгляда прибытия wavefield ky = –2π sin az cos el/λ и kz = –2π sin el/λ. Угол az является углом азимута прибытия wavefield. Угол el является углом возвышения прибытия wavefield. Направление взгляда указывает далеко от массива до wavefield источника.
Шаблон массивов обладает бесконечным числом периодически расположенного с интервалами peaks, который равен в силе пику mainlobe. Если вы регулируете массив к азимуту az0, el0 и направлению вертикального изменения, шаблон массивов для URA имеет свой пик mainlobe в wavenumber значении, ky0 = –2π sin az0 cos el0/λ, kz0 = –2π sin el0/λ. Шаблон массивов имеет сильный peaks в kym = ky0 + 2π m/dy, kzn = kz0 + 2π n/dz для целочисленных значений m и n. Количества dy и dz являются межэлементными интервалами в y - и направления z-, соответственно. Описанный в терминах направляющих косинусов, скрипучие лепестки происходят в um = u0 –mλ/dy и vn = v0 –nλ/dz. Основные направляющие косинусы лепестка определяются u0 = sin az0 cos el0 и v0 = sin el0, когда описано в терминах направления взгляда.
Скрипучие лепестки могут отобразиться или быть невидимы, в зависимости от значения um2 + vn2. Когда um2 + vn2 ≤ 1, направление взгляда представляет видимое направление. Когда значение больше один, скрипучий лепесток невидим. Для каждого видимого скрипучего лепестка можно вычислить направление взгляда (azm,n,elm,n) из um = sin azm cos elm и vn = sin eln. Интервал скрипучих лепестков зависит от λ/d. Когда λ/d мал достаточно, несколько скрипучих peaks лепестка могут соответствовать физическим направлениям взгляда.
[1] Деревья фургона, H.L. Оптимальная обработка матриц. Нью-Йорк: Wiley-межнаука, 2002.