Сравнение аналогового БИХ фильтры Lowpass

Спроектируйте аналог 5-го порядка Баттерворт фильтр lowpass с частотой среза 2 ГГц. Умножьтесь 2π преобразовывать частоту в радианы в секунду. Вычислите частотную характеристику фильтра в 4 096 точках.

n = 5;
f = 2e9;

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] = zp2tf(zb,pb,kb);
[hb,wb] = freqs(bb,ab,4096);

Спроектируйте фильтр Чебышевский Тип 1 5-го порядка с той же частотой ребра и 3 дБ неравномерности в полосе пропускания. Вычислите его частотную характеристику.

[z1,p1,k1] = cheby1(n,3,2*pi*f,'s');
[b1,a1] = zp2tf(z1,p1,k1);
[h1,w1] = freqs(b1,a1,4096);

Спроектируйте 5-й порядок фильтр Типа II Чебышева с той же частотой ребра и 30 дБ затухания в полосе задерживания. Вычислите его частотную характеристику.

[z2,p2,k2] = cheby2(n,30,2*pi*f,'s');
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = freqs(b2,a2,4096);

Спроектируйте 5-й порядок эллиптический фильтр с той же частотой ребра, 3 дБ неравномерности в полосе пропускания и 30 дБ затухания в полосе задерживания. Вычислите его частотную характеристику.

[ze,pe,ke] = ellip(n,3,30,2*pi*f,'s');
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = freqs(be,ae,4096);

Постройте затухание в децибелах. Опишите частоту в гигагерце. Сравните фильтры.

plot(wb/(2e9*pi),mag2db(abs(hb)))
hold on
plot(w1/(2e9*pi),mag2db(abs(h1)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))
axis([0 4 -40 5])
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')
legend('butter','cheby1','cheby2','ellip')

У Баттерворта и Чебышевских фильтров Типа II есть плоские полосы пропускания и широкие полосы перехода. Чебышевский Тип I и эллиптические фильтры прокручиваются прочь быстрее, но имеют неравномерность в полосе пропускания. Вход частоты к Чебышевской функции проекта Типа II устанавливает начало полосы задерживания, а не конец полосы пропускания.

Смотрите также

| | | | |