Этот пример исследует эффект положения канала и геометрии поверхности отражателя на диаграмме направленности далекого поля питаемого полуволновым диполем симметричного параболического отражателя.
Симметричный параболический отражатель, также обычно называемый 'тарелкой', является простой и широко используемой антенной с высоким коэффициентом усиления. Эти антенны обычно используются для спутниковой связи, и в гражданских и в военных применениях. Высокое усиление этих антенн достигается из-за электрического размера антенны, также называемой апертурой. Симметричный параболический отражатель имеет круговую апертуру, и о ее электрическом размере обычно сообщают в терминах диаметра. В зависимости от приложения диаметр отражателя мог лежать в диапазоне от 10-30 (терминалы VSAT), или вверх 100 (радио-астрономия).
В данном примере мы будем считать общую частоту нисходящего канала C-полосы используемой спутниками, такими как Интелсат 30 обслуживаний области Северной и Южной Америки [1]. Кроме того, мы будем предназначаться для приложения Очень Маленького апертурного терминала (VSAT) и поэтому, ограничивать диаметр отражателя, чтобы быть 1,2 м. В верхнем конце электрический размер отражателя будет приблизительно 15 \lambda. Наконец, отношение F/D выбрано, чтобы быть 0.3.
C_band = [3.4e9 3.7e9];
vp = physconst('lightspeed');
C_band_lambda = vp./C_band;
D = 1.2;
D_over_lambda_C = D./C_band_lambda;
F_by_D = 0.3;
Спроектируйте отражатель на выбранной частоте 3,5 ГГц и настройте параметры по мере необходимости для примера. Переориентируйтесь параболический отражатель, чтобы иметь опорное направление выравниваются с осью X.
f = 3.5e9; lambda = vp/f; p = design(reflectorParabolic,f); p.Radius = D/2; p.FocalLength = F_by_D*D; p.Tilt = 90; p.TiltAxis = [0 1 0]; figure show(p) view(45,25)
Поскольку параболический отражатель является электрически большой структурой, хорошо оценить, что сумма RAM должна была решить данную структуру на частоте проекта. Используйте функцию memoryEstimate, чтобы сделать это.
m = memoryEstimate(p,f)
m = '740 MB'
Вычислите 3D шаблон направленности далекого поля для прямой полуплоскости включая опорное направление. Кроме того, мы перемасштабируем величину, чтобы улучшить функции в шаблоне с помощью PatternPlotOptions.
az = -90:1:90; el = -90:1:90; figure pattern(p,f,az,el)
Создайте объект PatternPlotOptions и перемасштабируйте величину для графика.
patOpt = PatternPlotOptions;
patOpt.MagnitudeScale = [-10 35];
figure
pattern(p,f,az,el,'patternOptions',patOpt)
Максимальное усиление от параболического отражателя достигается под универсальным освещением апертуры (амплитуда, фаза). Шаблон канала, который компенсирует сферическую потерю распространения с углом прочь от оси, и в то же время становящейся нулевой в оправе, чтобы избежать связанных с избытком потерь, достиг бы этого идеального КПД единицы [2]. В действительности у нас есть различные типы антенн, которые используются в качестве подачи, такой как диполи, волноводы, рога и т.д. Используя анализ шаблона, мы можем численно оценить апертурный КПД. Это вычисление дает к апертурному КПД приблизительно 50% для дипольного канала.
Dmax = pattern(p,f,0,0); eta_ap = (10^(Dmax/10)/(pi^2))*(lambda/D)^2
eta_ap = 0.4969
В определенных приложениях может быть необходимо расположить канал далеко от центра отражателя. Как ожидалось такая настройка введет аберрации фазы, которые переведут в ухудшение шаблона. Исследуйте эффект осевого смещения канала, и - к и далеко от особого внимания на пиковом усилении в опорном направлении, i.e. (азимут, el) = (0,0) степени. Для этого варьируйтесь x-координата свойства FeedOffset на параболическом отражателе.
feed_offset = -lambda:0.1*lambda:lambda; Dmax_offset = zeros(size(feed_offset)); for i = 1:numel(feed_offset) p.FeedOffset = [feed_offset(i),0,0]; Dmax_offset(i) = pattern(p,f,0,0); end figure plot(feed_offset./lambda,Dmax_offset,'o-','LineWidth',2) xlabel('Axial Feed Displacement (x/\lambda)') ylabel('Directivity at Boresight (dBi)') grid on title('Boresight Directivity Variation due to Axial Feed Displacement')
Смещение канала путь от оси, со стороны результаты в скане луча. Для симметричных параболических отражателей ограничивается этот эффект. Подобно предыдущему разделу мы продолжаем смотреть на изменение усиления вида скуки в зависимости от канала, перемещаемого вдоль оси Y.
Dmax_offset = zeros(size(feed_offset)); for i = 1:numel(feed_offset) p.FeedOffset = [0,feed_offset(i),0]; Dmax_offset(i) = pattern(p,f,0,0); end figure plot(feed_offset./lambda,Dmax_offset,'o-','LineWidth',2) xlabel('Lateral Feed Displacement (y/\lambda)') ylabel('Directivity at Boresight (dBi)') grid on title('Boresight Directivity Variation due to Lateral Feed Displacement')
Идеально поверхность параболического отражателя отлично явится гладкой без любых поверхностных недостатков. Производственные процессы и механическое устройство подчеркивают результат на поверхности, которая отклоняется от совершенного параболоида. Используйте остаточный член поверхности RMS для каждой координаты и аналитически оцените ухудшение усиления, должное появляться ошибки [3].
epsilon_rms = lambda/25; chi = (4*F_by_D)*sqrt(log(1 + 1/(4*F_by_D)^2)); Gmax_est = 10*log10(eta_ap*(pi*D/lambda)^2*exp(-1*(4*pi*chi*epsilon_rms/lambda)^2))
Gmax_est = 29.0012
Затем мы создаем геометрическую модель отражателя с поверхностными ошибками. Чтобы сделать так, мы изолируем mesh для одного только отражателя и тревожим точки на поверхности с нулевым средним Гауссовым вероятностным процессом. Стандартное отклонение этого процесса присвоено быть ошибкой поверхности RMS. После беспокойства точек мы вычисляем RMS поверхностную ошибку подтвердить, что отклонение процесса действительно близко к тому, что мы устанавливаем.
p.FeedOffset = [0,0,0]; [Pt,t] = exportMesh(p); idrad = find(Pt(:,1)>=p.FocalLength); idref = find(Pt(:,1)<p.FocalLength); removeTri = []; for i = 1:size(t,1) if any(t(i,1)==idrad)||any(t(i,2)==idrad)||any(t(i,3)==idrad) removeTri = [removeTri,i]; end end tref = t; tref(removeTri,:) = []; figure em.internal.plotMesh(Pt,tref(:,1:3))
Создайте гауссов шум для беспокойства поверхностной mesh
n = epsilon_rms*randn(numel(idref),3); Ptnoisy = Pt(idref,:) + n; rms_model_error = sqrt(mean((Pt(idref,:)-Ptnoisy).^2,1))
rms_model_error = 0.0034 0.0034 0.0034
Создайте файл STL из отражателя, появляются и делают его платформой для установленного анализа антенны как показано. Элемент возбуждения эквивалентен прежде. Присвойте положение элемента с помощью feedlocation свойства на параболическом отражателе.
TR = triangulation(tref(:,1:3),Ptnoisy); stlwrite(TR,'noisyref.stl') pn = installedAntenna; pl = platform; exciter = p.Exciter; exciter.Tilt = 0; exciter.TiltAxis = [0 1 0]; pl.FileName = 'noisyref.stl'; pl.Units = 'm'; pn.Platform = pl; pn.Element = exciter; pn.ElementPosition = [p.FeedLocation(1),0,0]; figure show(pn)
Эффект поверхностных ошибок на отражателе приводит к сокращению усиления опорного направления на 3 дБ. Этот эффект особенно важен, чтобы рассмотреть в Ka, Ку и более высоких группах
patnOpt = PatternPlotOptions;
patnOpt.MagnitudeScale = [-10 35];
figure
pattern(pn,f,az,el,'patternOptions',patnOpt)
[1] https://www.intelsat.com/fleetmaps/? s=G-13
[2] В. Л. Стуцмен, Г. А. Тиле, Теория Антенны и Проект, p. 307, Вайли, 3-й Выпуск, 2013.
[3] J.Ruze, "Анализ теории-a допуска антенны", Proc. IEEE, издания 54, № 4. pp.633-640, апрель 1966.