Маршрут и обнаружение транспортного средства в Simulink Используя глубокое обучение

В этом примере показано, как использовать глубокие сверточные нейронные сети в модели Simulink®, чтобы выполнить обнаружение транспортного средства и маршрут. Этот пример берет системы координат из видео трафика как вход, выходные параметры два контура маршрута, которые соответствуют левым и правым маршрутам автомобиля, оборудованного датчиком, и обнаруживает транспортные средства в системе координат.

Этот пример использует предварительно обученную сеть обнаружения маршрута от Обнаружения Маршрута, Оптимизированного с примером GPU Coder GPU Coder Toolbox™. Для получения дополнительной информации смотрите Обнаружение Маршрута, Оптимизированное с GPU Coder (GPU Coder).

Этот пример также использует предварительно обученную сеть обнаружения транспортного средства от Обнаружения объектов Используя пример YOLO v2 Глубокого обучения Компьютерного зрения toolbox™. Для получения дополнительной информации смотрите, что Обнаружение объектов Использует Глубокое обучение (Computer Vision Toolbox) YOLO v2.

Алгоритмический рабочий процесс

Блок-схему для алгоритмического рабочего процесса модели Simulink показывают.

Получите предварительно обученные сети обнаружения маршрута и транспортного средства

getVehicleDetectionAndLaneDetectionNetworks функционируйте загружает trainedLaneNet.mat и yolov2ResNet50VehicleExample.mat файлы, если они уже не присутствуют.

getVehicleDetectionAndLaneDetectionNetworks()
Downloading pretrained lane detection network (143 MB)...
Downloading pretrained vehicle detection network (98 MB)...

Загрузите видео в качестве примера

if ~exist('./caltech_washington1.avi', 'file')
    url = 'https://www.mathworks.com/supportfiles/gpucoder/media/caltech_washington1.avi';
    websave('caltech_washington1.avi', url);
end

Маршрут и обнаружение транспортного средства модель Simulink

Модель Simulink для выполнения маршрута и обнаружения транспортного средства на видео трафика показывают. Когда модель запускается, Video Viewer блок отображает видео трафика с аннотациями транспортного средства и маршрутом.

open_system('laneAndVehicleDetectionMDL');

Детектор линий разметки

Для обнаружения маршрута видео трафика предварительно обрабатывается путем изменения размеров каждой системы координат видео к 227 227 3 и затем масштабируется на коэффициент 255. Предварительно обработанные системы координат затем вводятся к trainedLaneNet.mat сеть загружена в Predict блок из Deep Learning Toolbox™. Эта сеть берет изображение в качестве входа и выходных параметров два контура маршрута, которые соответствуют левым и правым маршрутам автомобиля, оборудованного датчиком. Каждый контур маршрута представлен параболическим уравнением:

$y = ax^2+bx+c$

Здесь y является боковым смещением, и x является продольным расстоянием от транспортного средства. Сетевые выходные параметры эти три параметра a, b, и c на маршрут. Сетевая архитектура похожа на AlexNet за исключением того, что последние несколько слоев заменяются меньшим полносвязным слоем и регрессией выходной слой. Lane Detection Coordinates Блок MATLAB function задает функциональный lane_detection_coordinates это берет выход из предсказать блока и выходные параметры три параметра; laneFound, ltPts, и rtPts. Пороговая обработка используется, чтобы определить, найдены ли оба левых и правых контура маршрута оба. Если оба найдены, laneFound набор должен быть верным, и траектории контуров вычисляются и хранятся в ltPts и rtPts соответственно.

type lane_detection_coordinates
function [laneFound,ltPts,rtPts] = lane_detection_coordinates(laneNetOut)

% Copyright 2020 The MathWorks, Inc.

persistent laneCoeffMeans;
if isempty(laneCoeffMeans)
    laneCoeffMeans = [-0.0002    0.0002    1.4740   -0.0002    0.0045   -1.3787];
end

persistent laneCoeffStds;
if isempty(laneCoeffStds)
    laneCoeffStds = [0.0030    0.0766    0.6313    0.0026    0.0736    0.9846];
end

params = laneNetOut .* laneCoeffStds + laneCoeffMeans;

isRightLaneFound = abs(params(6)) > 0.5; %c should be more than 0.5 for it to be a right lane
isLeftLaneFound =  abs(params(3)) > 0.5;

persistent vehicleXPoints;
if isempty(vehicleXPoints)
    vehicleXPoints = 3:30; %meters, ahead of the sensor
end

ltPts = coder.nullcopy(zeros(28,2,'single'));
rtPts = coder.nullcopy(zeros(28,2,'single'));

if isRightLaneFound && isLeftLaneFound
    rtBoundary = params(4:6);
    rt_y = computeBoundaryModel(rtBoundary, vehicleXPoints);
    ltBoundary = params(1:3);
    lt_y = computeBoundaryModel(ltBoundary, vehicleXPoints);
    
    % Visualize lane boundaries of the ego vehicle
    tform = get_tformToImage;
    % map vehicle to image coordinates
    ltPts =  tform.transformPointsInverse([vehicleXPoints', lt_y']);
    rtPts =  tform.transformPointsInverse([vehicleXPoints', rt_y']);
    laneFound = true;
else
    laneFound = false;
end

end

Обнаружение транспортного средства

Этот пример использует YOLO v2 базирующаяся сеть для обнаружения транспортного средства. Сеть обнаружения объектов YOLO v2 состоит из двух подсетей: сеть извлечения признаков сопровождается сетью обнаружения. Эта предварительно обученная сеть использует ResNet-50 для извлечения признаков. Подсеть обнаружения является маленьким CNN по сравнению с сетью извлечения признаков и состоит из нескольких сверточных слоев и слоев, характерных для YOLO v2.

Модель Simulink выполняет обнаружение транспортного средства в MATLAB Function блок Vehicle Detection YOLOv2. Этот функциональный блок задает функциональный vehicle_detection_yolo_v2 это загружает предварительно обученный детектор YOLO v2. Эта сеть берет изображение в качестве входа и выводит координаты ограничительной рамки наряду с оценками достоверности для транспортных средств в изображении.

type vehicle_detection_yolo_v2
function [bboxes,scores] = vehicle_detection_yolo_v2(In)

% Copyright 2020 The MathWorks, Inc.

persistent yolodetector;
if isempty(yolodetector)
    yolodetector = coder.loadDeepLearningNetwork('yolov2ResNet50VehicleExample.mat');
end

[bboxes,scores,~] = yolodetector.detect(In, 'threshold', .2);

end

Аннотация ограничительных рамок транспортного средства и траектории маршрута в видео трафика

Lane and Vehicle Annotation Блок MATLAB function задает функциональный lane_vehicle_annotation который аннотирует ограничительные рамки транспортного средства наряду с оценками достоверности. Если laneFound верно, затем левые и правые контуры маршрута, сохраненные в ltPts и rtPts overlayed на видео трафика.

type lane_vehicle_annotation
function In = lane_vehicle_annotation(laneFound, ltPts, rtPts, bboxes, scores, In)

% Copyright 2020 The MathWorks, Inc.

if ~isempty(bboxes)
    In = insertObjectAnnotation(In, 'rectangle', bboxes, scores);
end

pts = coder.nullcopy(zeros(28, 4, 'single'));
if laneFound
    prevpt =  [ltPts(1,1) ltPts(1,2)];
    for k = 2:1:28
        pts(k,1:4) = [prevpt ltPts(k,1) ltPts(k,2)];
        prevpt = [ltPts(k,1) ltPts(k,2)];
    end
    In = insertShape(In, 'Line', pts, 'LineWidth', 2);
    prevpt =  [rtPts(1,1) rtPts(1,2)];
    for k = 2:1:28
        pts(k,1:4) = [prevpt rtPts(k,1) rtPts(k,2)];
        prevpt = [rtPts(k,1) rtPts(k,2)];
    end
    In = insertShape(In, 'Line', pts, 'LineWidth', 2);
    In = insertMarker(In, ltPts);
    In = insertMarker(In, rtPts);
end

end

Запустите симуляцию

Чтобы проверить маршрут и алгоритмы обнаружения транспортного средства и отобразить траектории маршрута, ограничительные рамки транспортного средства и музыку к видео трафика, загруженному в модели Simulink, запускают симуляцию.

set_param('laneAndVehicleDetectionMDL', 'SimulationMode', 'Normal');
sim('laneAndVehicleDetectionMDL');
Warning: Saturate on overflow detected.

In MATLAB Function '<a
href="matlab:Stateflow.Debug.Runtime.open_object('laneAndVehicleDetectionMDL/Lane
and Vehicle Annotation', 0);">laneAndVehicleDetectionMDL/Lane and Vehicle
Annotation</a>':

    function In = LaneVehicleAnnotation(laneFound, ltPts, rtPts, bboxes, scores,
    In)

Suggested Actions:
    • Suppress future instances of this diagnostic from this source. - <a
    href="matlab:Simulink.SuppressedDiagnostic({'laneAndVehicleDetectionMDL/Lane
    and Vehicle
    Annotation'},'Stateflow:Runtime:DataSaturateError');">Suppress</a>
 

Генерация кода

С GPU Coder™ можно ускорить выполнение модели на NVIDIA® графические процессоры и сгенерировать код CUDA® для модели. Смотрите Генерацию кода для Глубокого обучения Модель Simulink, которая Выполняет Обнаружение Маршрута и Транспортного средства (GPU Coder) для получения дополнительной информации.

Очистка

Закройте модель Simulink.

close_system('laneAndVehicleDetectionMDL/Lane and Vehicle Detection Output');
close_system('laneAndVehicleDetectionMDL');
Для просмотра документации необходимо авторизоваться на сайте