В этом примере показано, как создать рассеянную модель в пространстве состояний, в которой одна из переменных состояния выпадает из модели после определенного периода.
Предположим, что скрытый процесс включает AR (2) и модель MA (1). Существует 50 периодов и MA (1), процесс выпадает из модели в течение итоговых 25 периодов. Следовательно, уравнение состояния в течение первых 25 периодов
и в течение последних 25 периодов, это
где и являются Гауссовыми со средним значением 0 и стандартным отклонением 1.
Скрытые процессы измеряются с помощью
в течение первых 25 периодов, и
в течение последних 25 периодов, где является Гауссовым со средним значением 0 и стандартным отклонением 1.
Вместе, скрытые уравнения процесса и наблюдения составляют модель в пространстве состояний. Если коэффициенты являются неизвестными параметрами, модель в пространстве состояний
в течение первых 25 периодов,
в течение периода 26, и
в течение последних 24 периодов.
Запишите функцию, которая задает как параметры в params
сопоставьте с матрицами модели в пространстве состояний, значениями начального состояния и типом состояния.
% Copyright 2015 The MathWorks, Inc. function [A,B,C,D,Mean0,Cov0,StateType] = diffuseAR2MAParamMap(params,T) %diffuseAR2MAParamMap Time-variant diffuse state-space model parameter %mapping function % % This function maps the vector params to the state-space matrices (A, B, % C, and D) and the type of state (StateType). From periods 1 to T/2, the % state model is an AR(2) and an MA(1) model, and the observation model is % the sum of the two states. From periods T/2 + 1 to T, the state model is % just the AR(2) model. The AR(2) model is diffuse. A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]}; B1 = {[1 0; 0 0; 0 1; 0 1]}; C1 = {params(4)*[1 0 1 0]}; Mean0 = []; Cov0 = []; StateType = [2 2 0 0]; A2 = {[params(1) params(2) 0 0; 1 0 0 0]}; B2 = {[1; 0]}; A3 = {[params(1) params(2); 1 0]}; B3 = {[1; 0]}; C3 = {params(5)*[1 0]}; A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)]; B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)]; C = [repmat(C1,T/2,1);repmat(C3,T/2,1)]; D = 1; end
Сохраните этот код как файл с именем diffuseAR2MAParamMap
на вашем пути MATLAB®.
Создайте рассеянную модель в пространстве состояний путем передачи функционального diffuseAR2MAParamMap
как указатель на функцию к dssm
. Этот пример использует 50 наблюдений.
T = 50; Mdl = dssm(@(params)diffuseAR2MAParamMap(params,T));
dssm
неявно создает рассеянную модель в пространстве состояний. Обычно, вы не можете проверить рассеянные модели в пространстве состояний, которые неявно создаются.
dssm
содержит неизвестные параметры. Можно симулировать данные и затем оценить параметры с помощью estimate
.