Симулируйте стационарные трендом и стационарные различием процессы

В этом примере показано, как симулировать стационарные трендом и стационарные различием процессы. Результаты симуляции иллюстрируют различие между этими двумя неустановившимися моделями процессов.

Сгенерируйте наблюдения от стационарного трендом процесса

Задайте стационарный трендом процесс

yt=0.5t+εt+1.4εt-1+0.8εt-2,

где инновационный процесс является Гауссовым с отклонением 8. После определения модели симулируйте 50 демонстрационных путей длины 200. Используйте 100 симуляций выжигания дефектов.

t = [1:200]';
trend = 0.5*t;

MdlTS = arima('Constant',0,'MA',{1.4,0.8},'Variance',8);
rng('default')
u = simulate(MdlTS,300,'NumPaths',50);

Yt = repmat(trend,1,50) + u(101:300,:);


figure
plot(Yt,'Color',[.85,.85,.85])
hold on
h1 = plot(t,trend,'r','LineWidth',5);
xlim([0,200])
title('Trend-Stationary Process')
h2 = plot(mean(Yt,2),'k--','LineWidth',2);
legend([h1,h2],'Trend','Simulation Mean',...
       'Location','NorthWest')
hold off

Figure contains an axes. The axes with title Trend-Stationary Process contains 52 objects of type line. These objects represent Trend, Simulation Mean.

Демонстрационные пути колеблются вокруг теоретической линии тренда с постоянным отклонением. Среднее значение симуляции близко к истинной линии тренда.

Сгенерируйте наблюдения от стационарного различием процесса

Задайте стационарную различием модель

Δyt=0.5+εt+1.4εt-1+0.8εt-1,

где инновационное распределение является Гауссовым с отклонением 8. После определения модели симулируйте 50 демонстрационных путей длины 200. Никакое выжигание дефектов не необходимо, потому что все демонстрационные пути должны начаться в нуле. Это - simulate начальная точка по умолчанию для неустановившихся процессов без преддемонстрационных данных.

MdlDS = arima('Constant',0.5,'D',1,'MA',{1.4,0.8},...
    'Variance',8);
Yd = simulate(MdlDS,200,'NumPaths',50);
figure
plot(Yd,'Color',[.85,.85,.85])
hold on
h1=plot(t,trend,'r','LineWidth',5);
xlim([0,200])
title('Difference-Stationary Process')
h2=plot(mean(Yd,2),'k--','LineWidth',2);
legend([h1,h2],'Trend','Simulation Mean',...
       'Location','NorthWest')
hold off

Figure contains an axes. The axes with title Difference-Stationary Process contains 52 objects of type line. These objects represent Trend, Simulation Mean.

Среднее значение симуляции близко к линии тренда с наклоном 0.5. Отклонение демонстрационных путей растет в зависимости от времени.

Демонстрационные пути к различию

Стационарный различием процесс является стационарным когда differenced соответственно. Возьмите первые различия демонстрационных путей от стационарного различием процесса и постройте differenced ряд. Одно наблюдение потеряно в результате дифференцирования.

diffY = diff(Yd,1,1);

figure
plot(2:200,diffY,'Color',[.85,.85,.85])
xlim([0,200])
title('Differenced Series')
hold on
h = plot(2:200,mean(diffY,2),'k--','LineWidth',2);
legend(h,'Simulation Mean','Location','NorthWest')
hold off

Figure contains an axes. The axes with title Differenced Series contains 51 objects of type line. This object represents Simulation Mean.

differenced ряд кажется стационарным со средним значением симуляции колебаться вокруг нуля.

Смотрите также

|

Связанные примеры

Больше о

Для просмотра документации необходимо авторизоваться на сайте