Эффективная оборудованием комплексная частично-систолическая матрица реализации решает Используя разложение QR

В этом примере показано, как реализовать эффективное оборудованием решение методом наименьших квадратов к матричному уравнению AX=B с комплексным знаком с помощью блока Complex Partial-Systolic Matrix Solve Using QR Decomposition.

Задайте матричные размерности

Задайте количество строк в матрицах A и B, количество столбцов в матрице А и количество столбцов в матрице B.

m = 300; % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Сгенерируйте случайные матрицы наименьших квадратов

В данном примере используйте функцию помощника complexRandomLeastSquaresMatrices сгенерировать случайные матрицы A и B для задачи наименьших квадратов AX=B. Матрицы сгенерированы таким образом, что действительные и мнимые части элементов массива и B между-1 и +1, и A является полным рангом.

rng('default')
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p);

Выберите Fixed-Point Data Types

Используйте функцию помощника complexQRMatrixSolveFixedpointTypes выбрать типы данных с фиксированной точкой для входных матриц A и B и вывести X таким образом, что существует низкая вероятность переполнения во время расчета. Для получения дополнительной информации о том, как типы данных выбраны, см. документ FixedPointMatrixLibraryDatatypesExample.pdf в текущем каталоге.

Действительные и мнимые части элементов массива и B между-1 и 1, таким образом, максимальное возможное абсолютное значение любого элемента является sqrt (2).

max_abs_A = sqrt(2);  % max(abs(A(:))
max_abs_B = sqrt(2);  % max(abs(B(:))
f = 24;               % Fraction length (bits of precision)
T = fixed.example.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,f);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Откройте модель

model = 'ComplexPartialSystolicQRMatrixSolveModel';
open_system(model);

Подсистема Обработчика Данных в этой модели берет комплексные матрицы A и B как входные параметры. ready порт инициировал Обработчик Данных. После отправки истинного validIn сигнал, перед ready может быть некоторая задержка установлен в ложь. Когда Обработчик Данных обнаруживает передний край ready сигнал, блок устанавливает validIn к истине и отправляет следующую строку A и B. Этот протокол позволяет данным быть отправленными каждый раз, когда передний край ready сигнал обнаруживается, гарантируя, что все данные обрабатываются.

Установите переменные в рабочем пространстве модели

Используйте функцию помощника setModelWorkspace добавить переменные, заданные выше к рабочему пространству модели. Эти переменные соответствуют параметрам блоков для блока Complex Partial-Systolic Matrix Solve Using QR Decomposition.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'numSamples',numSamples,'OutputType',OutputType);

Симулируйте модель

out = sim(model);

Создайте решение из выходных данных

Блок Complex Partial-Systolic Matrix Solve Using QR Decomposition выходные данные одна строка за один раз. Когда строка результата выводится, блок устанавливает validOut к истине. Строки X выводятся в порядке, они вычисляются, последняя строка сначала, таким образом, необходимо восстановить данные, чтобы интерпретировать результаты. Чтобы восстановить матрицу X от выходных данных, используйте функцию помощника matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);

Проверьте точность Выхода

Чтобы оценить точность блока Complex Partial-Systolic Matrix Solve Using QR Decomposition, вычислите относительную погрешность.

relative_error = norm(double(A*X - B))/norm(double(B)) %#ok<NOPTS>
relative_error =

   3.7583e-05

Для просмотра документации необходимо авторизоваться на сайте