Насос переменного смещения в изотермической жидкой сети
Simscape / Жидкости / Изотермическая Жидкость / Pumps & Motors
Блок Variable-Displacement Pump (IL) моделирует насос со смещением переменного объема. Жидкость может переместиться от порта A до порта B, названного прямым режимом, или от порта B до порта A, названного реверсным режимом. Операция режима насоса происходит, когда существует перепад давления в направлении потока. Моторная операция режима происходит, когда существует перепад давления в направлении потока.
Вращение вала соответствует знаку объема жидкости, перемещающегося через насос, который получен как физический сигнал в порте D. Положительное жидкое смещение в D соответствует положительному вращению вала в прямом режиме. Отрицательное жидкое смещение в D соответствует отрицательной угловой скорости вала в прямом режиме.
Режимы работы
Блок имеет восемь режимов работы. Рабочий режим зависит от перепада давления от порта A до порта B, Δp = p B – p A; скорость вращения, ω = ω R – ω C; и жидкое объемное смещение в порте D. Фигура выше сопоставляет эти режимы с октантами Δp-ω-D график:
Режим 1, Прямой насос: Положительная угловая скорость вала вызывает увеличение давления от порта A до порта B, и теките из порта A к порту B.
Режим 2, Реверсивный мотор: Теките из порта B к причинам порта A уменьшение давления от B до A и отрицательной угловой скорости вала.
Режим 3, Реверсивный насос: Отрицательная угловая скорость вала вызывает увеличение давления от порта B до порта A, и теките из B к A.
Режим 4, Прямое движение: Теките из порта A к причинам B уменьшение давления от A до B и положительной угловой скорости вала.
Режим 5, Реверсивный мотор: Теките из порта B к причинам порта A уменьшение давления от B до A и положительной угловой скорости вала.
Режим 6, Прямой насос: Отрицательная угловая скорость вала вызывает увеличение давления от A до B, и теките из A к B.
Режим 7, Прямое движение: Теките из порта A к причинам B уменьшение давления от A до B и отрицательной угловой скорости вала.
Режим 8, Реверсивный насос: Положительная угловая скорость вала вызывает увеличение давления от порта B до порта A, и теките из B к A.
Блок насоса имеет аналитичный, интерполяционная таблица и параметризация физического сигнала. При использовании табличных данных или входного сигнала для параметризации, можно принять решение охарактеризовать работу насоса на основе КПД или потерь.
Пороговый Pressure gain threshold for pump-motor transition параметров, Angular velocity threshold for pump-motor transition и Displacement threshold for pump-motor transition идентифицируют области, где численно сглаживавший переход потока между насосом операционные режимы может произойти. При давлении и порогах скорости вращения, выберите область перехода, которая обеспечивает некоторое поле для срока перехода, но которая мала достаточно относительно типичного перепада давления насоса и скорости вращения так, чтобы это не влияло на результаты вычисления. Для порога смещения выберите пороговое значение, которое меньше, чем типичный рабочий объем во время нормального функционирования.
Если вы устанавливаете Leakage and friction parameterization на Analytical
, блок вычисляет внутреннюю утечку и трение вала от постоянной номинальной стоимости скорости вала, перепада давления, объемного смещения и объемного КПД. Уровень утечек, который коррелируется с перепадом давления по насосу, вычисляется как:
где:
Δp является p B – p A.
ρ в среднем является средней плотностью жидкости.
K является коэффициентом Хагена-Пуазейля за аналитическую потерю,
где:
Именем D является Nominal displacement.
Именем ω является Nominal shaft angular velocity.
Именем η является Volumetric efficiency at nominal conditions.
Именем Δp является Nominal pressure gain.
Момент трения, который связан с перепадом давления насоса, вычисляется как:
где:
τ 0 является No-load torque.
k является моментом трения по сравнению с коэффициентом перепада давления в номинальном смещении, которое определяется из Mechanical efficiency at nominal conditions, ηm,nom:
τfr,nom является моментом трения при номинальных условиях:
ω является относительной угловой скоростью вала, или .
При использовании табличных данных для КПД насоса или потерь, можно обеспечить данные для одного или нескольких из насоса операционные режимы. Знаки табличных данных определяют операционный режим блока. Когда данные обеспечиваются меньше чем для восьми операционных режимов, блок вычисляет данные о дополнении для другого режима (режимов) путем расширения определенных данных в остающиеся октанты.
Tabulated data - volumetric and mechanical efficiencies
параметризацияУровень утечек вычисляется как:
где:
и η v является объемным КПД, который интерполирован от обеспеченных пользователями табличных данных. Срок перехода, α,
где:
Δp является p B – p A.
Порогом Δp является Pressure gain threshold for pump-motor transition.
ω является ω R – ω C.
Порогом ω является Angular velocity threshold for pump-motor transition.
Момент трения вычисляется как:
где:
и η m является механическим КПД, который интерполирован от обеспеченных пользователями табличных данных.
Tabulated data - volumetric and mechanical losses
параметризацияУровень утечек вычисляется как:
где потеря q интерполирована от параметра Volumetric loss table, q_loss(dp,w,D), который основан на предоставленных пользователями данных для перепада давления, угловой скорости вала и жидкого объемного смещения.
Момент трения вала вычисляется как:
где потеря τ интерполирована от параметра Mechanical loss table, torque_loss(dp,w,D), который основан на предоставленных пользователями данных для перепада давления, угловой скорости вала и жидкого объемного смещения.
Когда вы выбираете Input signal - volumetric and mechanical efficiencies
, порты EV и EM включены. Внутренняя утечка и трение вала вычисляются таким же образом как Tabulated data - volumetric and mechanical efficiencies
параметризация, за исключением того, что η v и η m получены непосредственно в портах EV и EM, соответственно.
Когда вы выбираете Input signal - volumetric and mechanical losses
, порты LV и LM включены. Эти порты получают утечку и момент трения как положительные физические сигналы. Уровень утечек вычисляется как:
где:
LV q является утечкой, полученной в порте LV.
p молотит, параметр Pressure gain threshold for pump-motor transition.
Момент трения вычисляется как:
где
τ LM является моментом трения, полученным в порте LM.
ω молотит, параметр Angular velocity threshold for pump-motor transition.
Объемная область значений и область значений механического КПД между пользовательскими заданными минимальными и максимальными значениями. Любые значения ниже или выше, чем эта область значений возьмут минимальные и максимальные заданные значения, соответственно.
Скорость потока жидкости насоса:
где
Крутящий момент насоса:
где
Механическая энергия, обеспеченная валом насоса:
и гидравлическая мощность насоса:
Чтобы быть уведомленными, если блок действует вне предоставленных табличных данных, можно установить Check if operating beyond the octants of supplied tabulated data на Warning
получить предупреждение, если это происходит, или Error
остановить симуляцию, когда это происходит. при использовании входных сигналов за объемные или механические потери вы можете быть уведомлены, если симуляция превосходит рабочие режимы параметром Check if operating beyond pump mode.
Можно также контролировать функциональность насоса. Установите Check if pressures are less than pump minimum pressure на Warning
получить предупреждение, если это происходит, или Error
остановить симуляцию, когда это происходит.
Центробежный насос (IL) | Насос фиксированного смещения (IL) | Компенсированный давлению насос (IL) | Мотор Переменной Производительности (IL) | Насос переменного смещения (TL)