exponenta event banner

Обновление статистики нормализации пакета с помощью функции модели

В этом примере показано, как обновить состояние сети в сети, определенной как функция.

Операция нормализации пакета нормализует каждый входной канал в мини-пакете. Для ускорения обучения сверточных нейронных сетей и снижения чувствительности к инициализации сети используйте операции пакетной нормализации между свертками и нелинейностями, такими как уровни ReLU.

Во время обучения операции нормализации партии сначала нормализуют активации каждого канала путем вычитания среднего значения мини-партии и деления на стандартное отклонение мини-партии. Затем операция сдвигает входной сигнал на обучаемый сдвиг β и масштабирует его на обучаемый масштабный коэффициент γ.

При использовании обученной сети для прогнозирования новых данных операции нормализации партии используют среднее значение и дисперсию обученного набора данных вместо среднего значения и дисперсии мини-партии для нормализации активаций.

Чтобы вычислить статистику набора данных, необходимо отслеживать статистику мини-пакета, используя постоянно обновляемое состояние.

При использовании операций пакетной нормализации в функции модели необходимо определить поведение как для обучения, так и для прогнозирования. Например, можно задать логическую опцию doTraining для управления тем, использует ли модель статистику мини-пакета для обучения или статистику набора данных для прогнозирования.

Этот пример части кода из функции модели показывает, как применить операцию нормализации пакета и обновить только статистику набора данных во время обучения.

if doTraining
    [dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm1.TrainedMean = trainedMean;
    state.batchnorm1.TrainedVariance = trainedVariance;
else
    dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
end

Загрузка данных обучения

digitTrain4DArrayData функция загружает изображения, их цифровые метки и углы поворота от вертикали. Создание arrayDatastore объект для изображений, меток и углов, а затем используйте combine для создания единого хранилища данных, содержащего все данные обучения. Извлеките имена классов и количество недискретных ответов.

[XTrain,YTrain,anglesTrain] = digitTrain4DArrayData;

dsXTrain = arrayDatastore(XTrain,'IterationDimension',4);
dsYTrain = arrayDatastore(YTrain);
dsAnglesTrain = arrayDatastore(anglesTrain);

dsTrain = combine(dsXTrain,dsYTrain,dsAnglesTrain);

classNames = categories(YTrain);
numClasses = numel(classNames);
numResponses = size(anglesTrain,2);
numObservations = numel(YTrain);

Просмотр некоторых изображений из данных обучения.

idx = randperm(numObservations,64);
I = imtile(XTrain(:,:,:,idx));
figure
imshow(I)

Определение модели глубокого обучения

Определите следующую сеть, которая предсказывает как метки, так и углы поворота.

  • Блок свертки-дозирования-ReLU с 16 фильтрами 5 на 5.

  • Ветвь из двух блоков свертки-последовательности с 32 фильтрами 3 на 3 с операцией ReLU между

  • Соединение пропуска с блоком свертки-последовательности с 32 свертками 1 на 1.

  • Объединение обеих ветвей с помощью добавления с последующей операцией ReLU

  • Для выхода регрессии ветвь с полностью связанной операцией размера 1 (количество откликов).

  • Для вывода классификации ветвь с полностью связанной операцией размера 10 (количество классов) и операцией softmax.

Определение и инициализация параметров и состояния модели

Определите параметры для каждой операции и включите их в структуру. Использовать формат parameters.OperationName.ParameterName где parameters - структура, OperationName - имя операции (например, «conv1») и ParameterName - имя параметра (например, «Веса»).

Создание структуры parameters содержащий параметры модели. Инициализируйте веса и смещения обучаемого слоя с помощью initializeGlorot и initializeZeros примерные функции соответственно. Инициализируйте параметры смещения и масштабирования пакетной нормализации с помощью initializeZeros и initializeOnes примерные функции соответственно.

Для выполнения обучения и вывода с использованием уровней пакетной нормализации необходимо также управлять состоянием сети. Перед прогнозированием необходимо указать среднее значение набора данных и дисперсию, полученные из данных обучения. Создание структуры state содержащий параметры состояния. Статистика нормализации пакета не должна быть dlarray объекты. Инициализируйте состояние обученного среднего и обученного отклонения нормализации партии с помощью zeros и ones соответственно.

Функции примера инициализации присоединены к этому примеру как вспомогательные файлы.

Инициализируйте параметры для первого сверточного уровня.

filterSize = [5 5];
numChannels = 1;
numFilters = 16;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv1.Bias = initializeZeros([numFilters 1]);

Инициализируйте параметры и состояние для первого уровня нормализации пакета.

parameters.batchnorm1.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm1.Scale = initializeOnes([numFilters 1]);
state.batchnorm1.TrainedMean = zeros(numFilters,1,'single');
state.batchnorm1.TrainedVariance = ones(numFilters,1,'single');

Инициализируйте параметры для второго сверточного уровня.

filterSize = [3 3];
numChannels = 16;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv2.Bias = initializeZeros([numFilters 1]);

Инициализируйте параметры и состояние для второго уровня нормализации пакета.

parameters.batchnorm2.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm2.Scale = initializeOnes([numFilters 1]);
state.batchnorm2.TrainedMean = zeros(numFilters,1,'single');
state.batchnorm2.TrainedVariance = ones(numFilters,1,'single');

Инициализируйте параметры для третьего сверточного уровня.

filterSize = [3 3];
numChannels = 32;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv3.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv3.Bias = initializeZeros([numFilters 1]);

Инициализируйте параметры и состояние для третьего уровня нормализации пакета.

parameters.batchnorm3.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm3.Scale = initializeOnes([numFilters 1]);
state.batchnorm3.TrainedMean = zeros(numFilters,1,'single');
state.batchnorm3.TrainedVariance = ones(numFilters,1,'single');

Инициализируйте параметры сверточного уровня в соединении пропуска.

filterSize = [1 1];
numChannels = 16;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.convSkip.Weights = initializeGlorot(sz,numOut,numIn);
parameters.convSkip.Bias = initializeZeros([numFilters 1]);

Инициализируйте параметры и состояние для уровня нормализации пакета в соединении пропуска.

parameters.batchnormSkip.Offset = initializeZeros([numFilters 1]);
parameters.batchnormSkip.Scale = initializeOnes([numFilters 1]);
state.batchnormSkip.TrainedMean = zeros([numFilters 1],'single');
state.batchnormSkip.TrainedVariance = ones([numFilters 1],'single');

Инициализируйте параметры для полностью подключенного уровня, соответствующего выходу классификации.

sz = [numClasses 6272];
numOut = numClasses;
numIn = 6272;
parameters.fc1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc1.Bias = initializeZeros([numClasses 1]);

Инициализируйте параметры для полностью подключенного уровня, соответствующего выходу регрессии.

sz = [numResponses 6272];
numOut = numResponses;
numIn = 6272;
parameters.fc2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc2.Bias = initializeZeros([numResponses 1]);

Просмотр структуры состояния.

state
state = struct with fields:
       batchnorm1: [1×1 struct]
       batchnorm2: [1×1 struct]
       batchnorm3: [1×1 struct]
    batchnormSkip: [1×1 struct]

Просмотр параметров состояния для batchnorm1 операция.

state.batchnorm1
ans = struct with fields:
        TrainedMean: [16×1 single]
    TrainedVariance: [16×1 single]

Определение функции модели

Создание функции model, перечисленных в конце примера, который вычисляет выходные данные модели глубокого обучения, описанной ранее.

Функция model принимает в качестве входных данных параметры модели parameters, входные данные dlX, флаг doTraining, которая определяет, возвращает ли модель выходные данные для обучения или прогнозирования, и состояние сети state. Сеть выводит прогнозы для меток, прогнозы для углов и обновленное состояние сети.

Определение функции градиентов модели

Создание функции modelGradients, перечисленных в конце примера, который принимает в качестве входных данных мини-пакет входных данных dlX с соответствующими целями T1 и T2 содержит метки и углы соответственно и возвращает градиенты потерь относительно обучаемых параметров, обновленного состояния сети и соответствующих потерь.

Укажите параметры обучения

Укажите параметры обучения.

numEpochs = 20;
miniBatchSize = 128;

plots = "training-progress";

Модель поезда

Обучение модели с помощью пользовательского цикла обучения. Использовать minibatchqueue для обработки и управления мини-партиями изображений. Для каждой мини-партии:

  • Использование пользовательской функции предварительной обработки мини-партии preprocessMiniBatch (определяется в конце этого примера) для одноконтактного кодирования меток класса.

  • Форматирование данных изображения с метками размеров 'SSCB' (пространственный, пространственный, канальный, пакетный). По умолчанию minibatchqueue объект преобразует данные в dlarray объекты с базовым типом single. Не добавляйте формат к меткам класса или углам.

  • Обучение на GPU, если он доступен. По умолчанию minibatchqueue объект преобразует каждый вывод в gpuArray если графический процессор доступен. Для использования графического процессора требуется Toolbox™ параллельных вычислений и поддерживаемое устройство графического процессора. Сведения о поддерживаемых устройствах см. в разделе Поддержка графического процессора по выпуску (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFcn', @preprocessMiniBatch,...
    'MiniBatchFormat',{'SSCB','',''});

Для каждой эпохи тасуйте данные и закольцовывайте мини-пакеты данных. В конце каждой эпохи отобразите ход обучения. Для каждой мини-партии:

  • Оценка градиентов и потерь модели с помощью dlfeval и modelGradients функция.

  • Обновление параметров сети с помощью adamupdate функция.

Инициализируйте параметры решателя Adam.

trailingAvg = [];
trailingAvgSq = [];

Инициализируйте график хода обучения.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

Тренируйте модель.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
    
    % Shuffle data.
    shuffle(mbq)
     
    % Loop over mini-batches
    while hasdata(mbq)
        iteration = iteration + 1;
        
        [dlX,dlY1,dlY2] = next(mbq);
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelGradients function.
        [gradients,state,loss] = dlfeval(@modelGradients, parameters, dlX, dlY1, dlY2, state);
        
        % Update the network parameters using the Adam optimizer.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAvgSq,iteration);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end

Тестовая модель

Проверка точности классификации модели путем сравнения прогнозов на тестовом наборе с истинными метками и углами. Управление набором тестовых данных с помощью minibatchqueue объект с той же настройкой, что и данные обучения.

[XTest,Y1Test,anglesTest] = digitTest4DArrayData;

dsXTest = arrayDatastore(XTest,'IterationDimension',4);
dsYTest = arrayDatastore(Y1Test);
dsAnglesTest = arrayDatastore(anglesTest);

dsTest = combine(dsXTest,dsYTest,dsAnglesTest);

mbqTest = minibatchqueue(dsTest,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFcn', @preprocessMiniBatch,...
    'MiniBatchFormat',{'SSCB','',''});

Чтобы предсказать метки и углы данных проверки, используйте modelPredictions функция, перечисленная в конце примера. Функция возвращает предсказанные классы и углы, а также сравнение с истинными значениями.

[classesPredictions,anglesPredictions,classCorr,angleDiff] = modelPredictions(parameters,state,mbqTest,classNames);

Оцените точность классификации.

accuracy = mean(classCorr)
accuracy = 0.9840

Оцените точность регрессии.

angleRMSE = sqrt(mean(angleDiff.^2))
angleRMSE = single
    6.3669

Просмотрите некоторые изображения с их прогнозами. Отобразите прогнозируемые углы красным цветом, а правильные - зеленым.

idx = randperm(size(XTest,4),9);
figure
for i = 1:9
    subplot(3,3,i)
    I = XTest(:,:,:,idx(i));
    imshow(I)
    hold on
    
    sz = size(I,1);
    offset = sz/2;
    
    thetaPred = anglesPredictions(idx(i));
    plot(offset*[1-tand(thetaPred) 1+tand(thetaPred)],[sz 0],'r--')
    
    thetaValidation = anglesTest(idx(i));
    plot(offset*[1-tand(thetaValidation) 1+tand(thetaValidation)],[sz 0],'g--')
    
    hold off
    label = string(classesPredictions(idx(i)));
    title("Label: " + label)
end

Функция модели

Функция model принимает в качестве входных данных параметры модели parameters, входные данные dlX, флаг doTraining, которая определяет, возвращает ли модель выходные данные для обучения или прогнозирования, и состояние сети state. Функция возвращает прогнозы для меток, прогнозы для углов и обновленное состояние сети.

function [dlY1,dlY2,state] = model(parameters,dlX,doTraining,state)
    
    % Convolution
    weights = parameters.conv1.Weights;
    bias = parameters.conv1.Bias;
    dlY = dlconv(dlX,weights,bias,'Padding',2);
    
    % Batch normalization, ReLU
    offset = parameters.batchnorm1.Offset;
    scale = parameters.batchnorm1.Scale;
    trainedMean = state.batchnorm1.TrainedMean;
    trainedVariance = state.batchnorm1.TrainedVariance;
    
    if doTraining
        [dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
        
        % Update state
        state.batchnorm1.TrainedMean = trainedMean;
        state.batchnorm1.TrainedVariance = trainedVariance;
    else
        dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
    end
    
    dlY = relu(dlY);
    
    % Convolution, batch normalization (skip connection)
    weights = parameters.convSkip.Weights;
    bias = parameters.convSkip.Bias;
    dlYSkip = dlconv(dlY,weights,bias,'Stride',2);
    
    offset = parameters.batchnormSkip.Offset;
    scale = parameters.batchnormSkip.Scale;
    trainedMean = state.batchnormSkip.TrainedMean;
    trainedVariance = state.batchnormSkip.TrainedVariance;
    
    if doTraining
        [dlYSkip,trainedMean,trainedVariance] = batchnorm(dlYSkip,offset,scale,trainedMean,trainedVariance);
        
        % Update state
        state.batchnormSkip.TrainedMean = trainedMean;
        state.batchnormSkip.TrainedVariance = trainedVariance;
    else
        dlYSkip = batchnorm(dlYSkip,offset,scale,trainedMean,trainedVariance);
    end
    
    % Convolution
    weights = parameters.conv2.Weights;
    bias = parameters.conv2.Bias;
    dlY = dlconv(dlY,weights,bias,'Padding',1,'Stride',2);
    
    % Batch normalization, ReLU
    offset = parameters.batchnorm2.Offset;
    scale = parameters.batchnorm2.Scale;
    trainedMean = state.batchnorm2.TrainedMean;
    trainedVariance = state.batchnorm2.TrainedVariance;
    
    if doTraining
        [dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
        
        % Update state
        state.batchnorm2.TrainedMean = trainedMean;
        state.batchnorm2.TrainedVariance = trainedVariance;
    else
        dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
    end
    
    dlY = relu(dlY);
    
    % Convolution
    weights = parameters.conv3.Weights;
    bias = parameters.conv3.Bias;
    dlY = dlconv(dlY,weights,bias,'Padding',1);
    
    % Batch normalization
    offset = parameters.batchnorm3.Offset;
    scale = parameters.batchnorm3.Scale;
    trainedMean = state.batchnorm3.TrainedMean;
    trainedVariance = state.batchnorm3.TrainedVariance;
    
    if doTraining
        [dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
        
        % Update state
        state.batchnorm3.TrainedMean = trainedMean;
        state.batchnorm3.TrainedVariance = trainedVariance;
    else
        dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
    end
    
    % Addition, ReLU
    dlY = dlYSkip + dlY;
    dlY = relu(dlY);
    
    % Fully connect, softmax (labels)
    weights = parameters.fc1.Weights;
    bias = parameters.fc1.Bias;
    dlY1 = fullyconnect(dlY,weights,bias);
    dlY1 = softmax(dlY1);
    
    % Fully connect (angles)
    weights = parameters.fc2.Weights;
    bias = parameters.fc2.Bias;
    dlY2 = fullyconnect(dlY,weights,bias);

end

Функция градиентов модели

modelGradients функция принимает в качестве входных параметров модели, мини-пакет входных данных dlX с соответствующими целями T1 и T2 содержит метки и углы соответственно и возвращает градиенты потерь относительно обучаемых параметров, обновленного состояния сети и соответствующих потерь.

function [gradients,state,loss] = modelGradients(parameters,dlX,T1,T2,state)

    doTraining = true;
    [dlY1,dlY2,state] = model(parameters,dlX,doTraining,state);
    
    lossLabels = crossentropy(dlY1,T1);
    lossAngles = mse(dlY2,T2);
    
    loss = lossLabels + 0.1*lossAngles;
    gradients = dlgradient(loss,parameters);

end

Функция прогнозирования модели

modelPredictions функция принимает параметры модели, состояние сети, minibatchqueue входных данных mbqи сетевые классы, и возвращает предсказания модели путем итерации по всем данным в minibatchqueue с использованием model функции с помощью doTraining параметр имеет значение false. Функция возвращает предсказанные классы и углы, а также сравнение с истинными значениями. Для классов сравнение является вектором единиц и нулей, который представляет правильные и неправильные прогнозы. Для углов сравнение представляет собой разность между прогнозируемым углом и истинным значением.

function [classesPredictions,anglesPredictions,classCorr,angleDiff] = modelPredictions(parameters,state,mbq,classes)

    doTraining = false;
    
    classesPredictions = [];
    anglesPredictions = [];
    classCorr = [];
    angleDiff = [];
    
    while hasdata(mbq)
        [dlX,dlY1,dlY2] = next(mbq);
        
        % Make predictions using the model function.
        [dlY1Pred,dlY2Pred] = model(parameters,dlX,doTraining,state);
        
        % Determine predicted classes.
        Y1PredBatch = onehotdecode(dlY1Pred,classes,1);
        classesPredictions = [classesPredictions Y1PredBatch];
        
        % Dermine predicted angles
        Y2PredBatch = extractdata(dlY2Pred);
        anglesPredictions = [anglesPredictions Y2PredBatch];
        
        % Compare predicted and true classes
        Y1 = onehotdecode(dlY1,classes,1);
        classCorr = [classCorr Y1PredBatch == Y1];
        
        % Compare predicted and true angles
        angleDiffBatch = Y2PredBatch - dlY2;
        angleDiff = [angleDiff extractdata(gather(angleDiffBatch))];
        
    end

end

Функция предварительной обработки мини-партий

preprocessMiniBatch функция выполняет предварительную обработку данных с помощью следующих шагов:

  1. Извлеките данные изображения из входящего массива ячеек и объедините их в числовой массив. Конкатенация данных изображения над четвертым размером добавляет к каждому изображению третий размер, который будет использоваться в качестве размера одиночного канала.

  2. Извлеките данные метки и угла из входящих массивов ячеек и объедините их в категориальный массив и числовой массив соответственно.

  3. Одноконтурное кодирование категориальных меток в числовые массивы. Кодирование в первом измерении создает закодированный массив, который соответствует форме сетевого вывода.

function [X,Y,angle] = preprocessMiniBatch(XCell,YCell,angleCell)
    
    % Extract image data from cell and concatenate
    X = cat(4,XCell{:});
    % Extract label data from cell and concatenate
    Y = cat(2,YCell{:});
    % Extract angle data from cell and concatenate
    angle = cat(2,angleCell{:});
        
    % One-hot encode labels
    Y = onehotencode(Y,1);    
    
end

См. также

| | | | | | | | | | | |

Связанные темы