В ситуациях, когда бортовая радиолокационная система должна подавлять искажения и помехи помех, система нуждается в более сложном алгоритме, чем может обеспечить компенсатор импульсов DPCA. Одним из вариантов является алгоритм инверсии матрицы выборки (SMI). SMI является оптимальным алгоритмом STAP и часто используется в качестве основы для сравнения с другими алгоритмами.
Алгоритм SMI является дорогостоящим в вычислительном отношении и предполагает стационарную среду для множества импульсов. Если вам нужно подавить загромождение и помехи глушителя при меньших вычислениях или в быстро меняющейся среде, попробуйте вместо этого использовать компенсатор импульсов ADPCA.
phased.STAPSMIBeamformer объект реализует алгоритм SMI. В частности, объект позволяет указать:
Количество тренировочных ячеек. Алгоритм использует обучающие ячейки для оценки помех. В общем, большее количество тренировочных ячеек приводит к лучшей оценке помех.
Количество защитных ячеек, близких к целевым ячейкам. Алгоритм распознает защитные ячейки, чтобы предотвратить загрязнение целевой отдачи оценкой помех.
Этот сценарий идентичен сценарию, представленному в Adaptive DPCA Pulse Canceller To Reject Clutter and Interference. Можно запустить код для обоих примеров, чтобы сравнить компенсатор импульсов ADPCA с формирователем луча SMI. Подробности примера и код повторяются для удобства.
Для повторения сценария для удобства бортовая радиолокационная платформа представляет собой шестиэлементную ULA, работающую на частоте 4 ГГц. Элементы матрицы разнесены на половину длины волны несущей частоты 4 ГГц. РЛС излучает десять прямоугольных импульсов длительностью два мкс с PRF 5 кГц. Платформа движется вдоль оси массива со скоростью, равной половине произведения шага элемента и PRF. Мишень имеет неплавающий RCS 1 квадратный метр и движется с вектором постоянной скорости (15,15,0). Стационарный широкополосный глушитель заграждения расположен по адресу (3.5e3,1e3,0). Глушитель имеет эффективную излучаемую мощность 1 кВт.
Примечание.Этот пример выполняется только в R2016b или более поздних версиях. При использовании более ранней версии замените каждый вызов функции эквивалентным step синтаксис. Например, заменить myObject(x) с step(myObject,x).
PRF = 5e3; fc = 4e9; fs = 1e6; c = physconst('LightSpeed'); antenna = phased.IsotropicAntennaElement... ('FrequencyRange',[8e8 5e9],'BackBaffled',true); lambda = c/fc; array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2); waveform = phased.RectangularWaveform('PulseWidth', 2e-6,... 'PRF',PRF,'SampleRate',fs,'NumPulses',1); radiator = phased.Radiator('Sensor',array,... 'PropagationSpeed',c,... 'OperatingFrequency',fc); collector = phased.Collector('Sensor',array,... 'PropagationSpeed',c,... 'OperatingFrequency',fc); vy = (array.ElementSpacing * PRF)/2; transmitterplatform = phased.Platform('InitialPosition',[0;0;3e3],... 'Velocity',[0;vy;0]); % Load simulated constant gamma clutter load clutterdata target = phased.RadarTarget('MeanRCS',1,... 'Model','Nonfluctuating','OperatingFrequency',fc); targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],... 'Velocity',[15;15;0]); % add jammer signal with 200 samples per frame and an ERP of 1000 W. jamsig = sqrt(1000)*randn(200,1); jammerplatform = phased.Platform(... 'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]); channel = phased.FreeSpace('OperatingFrequency',fc,... 'TwoWayPropagation',false,'SampleRate',fs); receiverpreamp = phased.ReceiverPreamp('NoiseFigure',0,... 'EnableInputPort',true,'SampleRate',fs,'Gain',40); transmitter = phased.Transmitter('PeakPower',1e4,... 'InUseOutputPort',true,'Gain',40);
Распространение десяти прямоугольных импульсов к цели и от цели и сбор откликов в массиве. Вычислить загромождение эхо с использованием постоянной гамма-модели с гамма-значением, соответствующим лесистой местности. Также распространить сигнал постановки помех от места постановки помех на бортовую ULA.
NumPulses = 10; wav = waveform(); M = fs/PRF; N = array.NumElements; rxsig = zeros(M,N,NumPulses); %csig = zeros(M,N,NumPulses); jsig = zeros(M,N,NumPulses); fasttime = unigrid(0,1/fs,1/PRF,'[)'); rangebins = (c*fasttime)/2; clutter.SeedSource = 'Property'; clutter.Seed = 40543; jammer.SeedSource = 'Property'; jammer.Seed = 96703; receiverpreamp.SeedSource = 'Property'; receiverpreamp.Seed = 56113; jamloc = jammerplatform.InitialPosition; for n = 1:NumPulses [txloc,txvel] = transmitterplatform(1/PRF); % move transmitter [tgtloc,tgtvel] = targetplatform(1/PRF); % move target [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target [txsig,txstatus] = transmitter(wav); % transmit pulse %csig(:,:,n) = clutter(txsig(abs(txsig)>0)); % collect clutter txsig = radiator(txsig,tgtang); % radiate pulse txsig = channel(txsig,txloc,tgtloc,... txvel,tgtvel); % propagate pulse to target txsig = target(txsig); % reflect off target txsig = channel(txsig,tgtloc,txloc,... tgtvel,txvel); % propagate to array rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse %jamsig = jammer(); % generate jammer signal [~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter jamsig = channel(jamsig,jamloc,txloc,... [0;0;0],txvel); % propagate jammer signal jsig(:,:,n) = collector(jamsig,jamang); % collect jammer signal rxsig(:,:,n) = receiverpreamp(... rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),... ~txstatus); % receive pulse plus clutter return plus jammer signal end
Определите диапазон цели, затвор дальности и двусторонний доплеровский сдвиг.
sp = radialspeed(tgtloc, targetplatform.Velocity, ... txloc, transmitterplatform.Velocity); tgtdoppler = 2*speed2dop(sp,lambda); tgtLocation = global2localcoord(tgtloc,'rs',txloc); tgtazang = tgtLocation(1); tgtelang = tgtLocation(2); tgtrng = tgtLocation(3); tgtcell = val2ind(tgtrng,c/(2 * fs));
Создайте объект формирователя луча SMI. Используйте 100 тренировочных ячеек, по 50 с каждой стороны затвора целевого диапазона. Используйте четыре ячейки защиты, две ячейки диапазона перед целевой ячейкой и две ячейки диапазона за целевой ячейкой. Получение ответа и весов формирователя луча.
tgtang = [tgtazang; tgtelang]; beamformer = phased.STAPSMIBeamformer('SensorArray',array,... 'PRF',PRF,'PropagationSpeed',c,... 'OperatingFrequency',fc,... 'Direction',tgtang,'Doppler',tgtdoppler,... 'WeightsOutputPort',true,... 'NumGuardCells',4,'NumTrainingCells',100); [y,weights] = beamformer(rxsig,tgtcell);
Постройте график выходных данных массива после формирования диаграммы направленности.
plot([tgtrng,tgtrng],[0 5e-6],'-.',rangebins,abs(y)) axis tight title('SMI Beamformer Output') xlabel('Range (meters)') ylabel('Magnitude')

Постройте график углово-доплеровского отклика с весами формирования луча.
response = phased.AngleDopplerResponse('SensorArray',array,... 'OperatingFrequency',4e9,'PRF',PRF,... 'PropagationSpeed',physconst('LightSpeed')); plotResponse(response,weights) title('Angle-Doppler Response with SMI Beamforming Weights')
