exponenta event banner

RegressionKernel

Модель регрессии ядра Гаусса с использованием случайного расширения признаков

Описание

RegressionKernel является обученным объектом модели для гауссовой регрессии ядра с использованием случайного расширения признаков. RegressionKernel является более практичным для приложений больших данных, которые имеют большие обучающие наборы, но могут также применяться к меньшим наборам данных, которые помещаются в память.

В отличие от других регрессионных моделей, и для экономичного использования памяти, RegressionKernel объекты модели не хранят учебные данные. Однако они сохраняют такую информацию, как размер расширенного пространства, параметр масштаба ядра и сила регуляризации.

Вы можете использовать обученные RegressionKernel модели для продолжения обучения с использованием обучающих данных, прогнозирования ответов на новые данные и вычисления средней квадратичной ошибки или эпсилон-нечувствительной потери. Для получения более подробной информации см. resume, predict, и loss.

Создание

Создать RegressionKernel с использованием fitrkernel функция. Эта функция отображает данные в низкоразмерном пространстве в высокомерное пространство, затем укладывает линейную модель в высокомерное пространство, минимизируя регуляризованную целевую функцию. Получение линейной модели в высокомерном пространстве эквивалентно применению гауссова ядра к модели в низкоразмерном пространстве. Доступные линейные регрессионные модели включают регуляризованные векторные машины поддержки (SVM) и регрессионные модели наименьших квадратов.

Свойства

развернуть все

Свойства регрессии ядра

Половина ширины эпсилон-нечувствительной полосы, заданной как неотрицательный скаляр.

Если Learner не является 'svm', то Epsilon является пустым массивом ([]).

Типы данных: single | double

Тип модели линейной регрессии, указанный как 'leastsquares' или 'svm'.

В следующей таблице f (x) = T (x) β + b.

  • x - наблюдение (вектор строки) из p переменных предиктора.

  • T (·) - преобразование наблюдения (вектор строки) для расширения признаков. T (x) отображает x в ℝp в высокомерное пространство (ℝm).

  • β - вектор из m коэффициентов.

  • b - скалярное смещение.

СтоимостьАлгоритмФункция потерьFittedLoss Стоимость
'leastsquares'Линейная регрессия через обычные наименьшие квадратыСреднеквадратичная ошибка (MSE): ℓ[y,f (x)] = 12 [y f (x)] 2'mse'
'svm'Поддержка векторной машинной регрессииЭпсилон нечувствительный: ℓ[y,f (x)] = max [0, | y f (x) | −'epsiloninsensitive'

Число размеров развернутого пространства, указанное как положительное целое число.

Типы данных: single | double

Параметр масштаба ядра, заданный как положительный скаляр.

Типы данных: single | double

Ограничение поля, указанное как положительный скаляр.

Типы данных: double | single

Сила члена регуляризации, определяемая как неотрицательный скаляр.

Типы данных: single | double

Функция потерь, используемая для соответствия линейной модели, заданная как 'epsiloninsensitive' или 'mse'.

СтоимостьАлгоритмФункция потерьLearner Стоимость
'epsiloninsensitive'Поддержка векторной машинной регрессииЭпсилон нечувствительный: ℓ[y,f (x)] = max [0, | y f (x) | −'svm'
'mse'Линейная регрессия через обычные наименьшие квадратыСреднеквадратичная ошибка (MSE): ℓ[y,f (x)] = 12 [y f (x)] 2'leastsquares'

Тип штрафа по сложности, указанный как 'lasso (L1)' или 'ridge (L2)'.

Программное обеспечение составляет целевую функцию для минимизации из суммы функции средних потерь (см. FittedLoss) и значение регуляризации из этой таблицы.

СтоимостьОписание
'lasso (L1)'Лассо (L1) пенальти: λ∑j=1p'βj|
'ridge (L2)'Штраф по Риджу (L2): λ2∑j=1pβj2

λ определяет силу члена регуляризации (см. Lambda).

Программное обеспечение исключает термин смещения (β0) из штрафа за регуляризацию.

Другие свойства регрессии

Индексы категориального предиктора, указанные как вектор положительных целых чисел. CategoricalPredictors содержит значения индекса, соответствующие столбцам данных предиктора, которые содержат категориальные предикторы. Если ни один из предикторов не категоричен, то это свойство пустое ([]).

Типы данных: single | double

Параметры, используемые для обучения RegressionKernel модель, заданная как структура.

Поля доступа ModelParameters с использованием точечной нотации. Например, доступ к относительному допуску по линейным коэффициентам и члену смещения осуществляется с помощью Mdl.ModelParameters.BetaTolerance.

Типы данных: struct

Имена предикторов в порядке их появления в данных предиктора, заданных как клеточный массив векторов символов. Длина PredictorNames равно количеству столбцов, используемых в качестве переменных предиктора в обучающих данных X или Tbl.

Типы данных: cell

Расширенные имена предикторов, заданные как массив ячеек символьных векторов.

Если модель использует кодировку для категориальных переменных, то ExpandedPredictorNames содержит имена, описывающие развернутые переменные. В противном случае ExpandedPredictorNames является таким же, как PredictorNames.

Типы данных: cell

Имя ответной переменной, указанное как символьный вектор.

Типы данных: char

Функция преобразования ответа для применения к прогнозируемым ответам, указанная как 'none' или дескриптор функции.

Для моделей регрессии ядра и до преобразования отклика прогнозируемый отклик для наблюдения x (вектор строки) равен f (x) = T (x) β + b.

  • T (·) - это преобразование наблюдения для расширения признаков.

  • β соответствует Mdl.Beta.

  • b соответствует Mdl.Bias.

Для определяемой функции MATLAB ® или функции введите ее дескриптор. Например, можно ввестиMdl.ResponseTransform = @function, где function принимает числовой вектор исходных ответов и возвращает числовой вектор того же размера, содержащий преобразованные ответы.

Типы данных: char | function_handle

Функции объекта

limeЛокальные интерпретируемые модели-агностические объяснения (LIME)
lossРегрессионная потеря для модели регрессии ядра Гаусса
partialDependenceВычислить частичную зависимость
plotPartialDependenceСоздание графиков частичной зависимости (PDP) и индивидуального условного ожидания (ICE)
predictПрогнозирование ответов для модели регрессии ядра Гаусса
resumeВозобновление обучения модели регрессии ядра Гаусса
shapleyЗначения Шапли

Примеры

свернуть все

Обучение модели регрессии ядра для массива высокого уровня с помощью SVM.

При выполнении вычислений в массивах TALL MATLAB ® использует либо параллельный пул (по умолчанию при наличии Toolbox™ Parallel Computing), либо локальный сеанс MATLAB. Для выполнения примера с использованием локального сеанса MATLAB при наличии панели инструментов Parallel Computing Toolbox измените глобальную среду выполнения с помощью mapreducer функция.

mapreducer(0)

Создайте хранилище данных, которое ссылается на расположение папки с данными. Данные могут содержаться в одном файле, коллекции файлов или во всей папке. Удовольствие 'NA' значения как отсутствующие данные, так что datastore заменяет их на NaN значения. Выберите подмножество переменных для использования. Создайте высокую таблицу поверх хранилища данных.

varnames = {'ArrTime','DepTime','ActualElapsedTime'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
    'SelectedVariableNames',varnames);
t = tall(ds);

Определить DepTime и ArrTime в качестве переменных предиктора (X) и ActualElapsedTime в качестве переменной ответа (Y). Выберите наблюдения, для которых ArrTime позднее, чем DepTime.

daytime = t.ArrTime>t.DepTime;
Y = t.ActualElapsedTime(daytime);     % Response data
X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data

Стандартизация переменных предиктора.

Z = zscore(X); % Standardize the data

Обучение модели регрессии гауссова ядра по умолчанию со стандартизированными предикторами. Извлеките сводку соответствия, чтобы определить, насколько хорошо алгоритм оптимизации соответствует модели данным.

[Mdl,FitInfo] = fitrkernel(Z,Y)
Found 6 chunks.
|=========================================================================
| Solver | Iteration  /  |   Objective   |   Gradient    | Beta relative |
|        | Data Pass     |               |   magnitude   |    change     |
|=========================================================================
|   INIT |     0 /     1 |  4.307833e+01 |  4.345788e-02 |           NaN |
|  LBFGS |     0 /     2 |  3.705713e+01 |  1.577301e-02 |  9.988252e-01 |
|  LBFGS |     1 /     3 |  3.704022e+01 |  3.082836e-02 |  1.338410e-03 |
|  LBFGS |     2 /     4 |  3.701398e+01 |  3.006488e-02 |  1.116070e-03 |
|  LBFGS |     2 /     5 |  3.698797e+01 |  2.870642e-02 |  2.234599e-03 |
|  LBFGS |     2 /     6 |  3.693687e+01 |  2.625581e-02 |  4.479069e-03 |
|  LBFGS |     2 /     7 |  3.683757e+01 |  2.239620e-02 |  8.997877e-03 |
|  LBFGS |     2 /     8 |  3.665038e+01 |  1.782358e-02 |  1.815682e-02 |
|  LBFGS |     3 /     9 |  3.473411e+01 |  4.074480e-02 |  1.778166e-01 |
|  LBFGS |     4 /    10 |  3.684246e+01 |  1.608942e-01 |  3.294968e-01 |
|  LBFGS |     4 /    11 |  3.441595e+01 |  8.587703e-02 |  1.420892e-01 |
|  LBFGS |     5 /    12 |  3.377755e+01 |  3.760006e-02 |  4.640134e-02 |
|  LBFGS |     6 /    13 |  3.357732e+01 |  1.912644e-02 |  3.842057e-02 |
|  LBFGS |     7 /    14 |  3.334081e+01 |  3.046709e-02 |  6.211243e-02 |
|  LBFGS |     8 /    15 |  3.309239e+01 |  3.858085e-02 |  6.411356e-02 |
|  LBFGS |     9 /    16 |  3.276577e+01 |  3.612292e-02 |  6.938579e-02 |
|  LBFGS |    10 /    17 |  3.234029e+01 |  2.734959e-02 |  1.144307e-01 |
|  LBFGS |    11 /    18 |  3.205763e+01 |  2.545990e-02 |  7.323180e-02 |
|  LBFGS |    12 /    19 |  3.183341e+01 |  2.472411e-02 |  3.689625e-02 |
|  LBFGS |    13 /    20 |  3.169307e+01 |  2.064613e-02 |  2.998555e-02 |
|=========================================================================
| Solver | Iteration  /  |   Objective   |   Gradient    | Beta relative |
|        | Data Pass     |               |   magnitude   |    change     |
|=========================================================================
|  LBFGS |    14 /    21 |  3.146896e+01 |  1.788395e-02 |  5.967293e-02 |
|  LBFGS |    15 /    22 |  3.118171e+01 |  1.660696e-02 |  1.124062e-01 |
|  LBFGS |    16 /    23 |  3.106224e+01 |  1.506147e-02 |  7.947037e-02 |
|  LBFGS |    17 /    24 |  3.098395e+01 |  1.564561e-02 |  2.678370e-02 |
|  LBFGS |    18 /    25 |  3.096029e+01 |  4.464104e-02 |  4.547148e-02 |
|  LBFGS |    19 /    26 |  3.085475e+01 |  1.442800e-02 |  1.677268e-02 |
|  LBFGS |    20 /    27 |  3.078140e+01 |  1.906548e-02 |  2.275185e-02 |
|========================================================================|
Mdl = 
  RegressionKernel
            PredictorNames: {'x1'  'x2'}
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 64
               KernelScale: 1
                    Lambda: 8.5385e-06
             BoxConstraint: 1
                   Epsilon: 5.9303


  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-tall'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 8.5385e-06
           BetaTolerance: 1.0000e-03
       GradientTolerance: 1.0000e-05
          ObjectiveValue: 30.7814
       GradientMagnitude: 0.0191
    RelativeChangeInBeta: 0.0228
                 FitTime: 56.8110
                 History: [1x1 struct]

Mdl является RegressionKernel модель. Для проверки ошибки регрессии можно пройти Mdl и данные обучения или новые данные для loss функция. Или, вы можете пройти Mdl и новые данные предиктора для predict функция для прогнозирования ответов для новых наблюдений. Вы также можете пройти Mdl и данные обучения для resume функция продолжения обучения.

FitInfo - структурный массив, содержащий информацию об оптимизации. Использовать FitInfo чтобы определить, являются ли измерения окончания оптимизации удовлетворительными.

Для повышения точности можно увеличить максимальное число итераций оптимизации ('IterationLimit') и уменьшите значения допуска ('BetaTolerance' и 'GradientTolerance') с использованием аргументов пары имя-значение fitrkernel. Это может улучшить такие меры, как ObjectiveValue и RelativeChangeInBeta в FitInfo. Можно также оптимизировать параметры модели с помощью 'OptimizeHyperparameters' аргумент пары имя-значение.

Возобновите обучение модели регрессии ядра Гаусса для дополнительных итераций, чтобы улучшить потерю регрессии.

Загрузить carbig набор данных.

load carbig

Укажите переменные предиктора (X) и переменной ответа (Y).

X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

Удалить строки X и Y где любой массив имеет NaN значения. Удаление строк с NaN значения перед передачей данных fitrkernel может ускорить обучение и сократить использование памяти.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5); 
Y = R(:,end); 

Зарезервировать 10% наблюдений как выборку с удержанием. Извлеките учебные и тестовые индексы из определения раздела.

rng(10)  % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Стандартизация обучающих данных и обучение модели регрессии ядра. Задайте предел итерации равным 5 и укажите 'Verbose',1 для отображения диагностической информации.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain,'IterationLimit',5,'Verbose',1)
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  5.691016e+00 |  0.000000e+00 |  5.852758e-02 |                |             0 |
|  LBFGS |      1 |            1 |  5.086537e+00 |  8.000000e+00 |  5.220869e-02 |   9.846711e-02 |           256 |
|  LBFGS |      1 |            2 |  3.862301e+00 |  5.000000e-01 |  3.796034e-01 |   5.998808e-01 |           256 |
|  LBFGS |      1 |            3 |  3.460613e+00 |  1.000000e+00 |  3.257790e-01 |   1.615091e-01 |           256 |
|  LBFGS |      1 |            4 |  3.136228e+00 |  1.000000e+00 |  2.832861e-02 |   8.006254e-02 |           256 |
|  LBFGS |      1 |            5 |  3.063978e+00 |  1.000000e+00 |  1.475038e-02 |   3.314455e-02 |           256 |
|=================================================================================================================|
Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 256
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1
                   Epsilon: 0.8617


  Properties, Methods

Mdl является RegressionKernel модель.

Стандартизация данных теста с использованием одного и того же среднего и стандартного отклонения столбцов учебных данных. Оцените погрешность, не чувствительную к эпсилону, для тестового набора.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674

Продолжайте обучение модели с помощью resume. Эта функция продолжает обучение с теми же опциями, что и для обучения. Mdl.

UpdatedMdl = resume(Mdl,Ztrain,Ytrain);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  3.063978e+00 |  0.000000e+00 |  1.475038e-02 |                |           256 |
|  LBFGS |      1 |            1 |  3.007822e+00 |  8.000000e+00 |  1.391637e-02 |   2.603966e-02 |           256 |
|  LBFGS |      1 |            2 |  2.817171e+00 |  5.000000e-01 |  5.949008e-02 |   1.918084e-01 |           256 |
|  LBFGS |      1 |            3 |  2.807294e+00 |  2.500000e-01 |  6.798867e-02 |   2.973097e-02 |           256 |
|  LBFGS |      1 |            4 |  2.791060e+00 |  1.000000e+00 |  2.549575e-02 |   1.639328e-02 |           256 |
|  LBFGS |      1 |            5 |  2.767821e+00 |  1.000000e+00 |  6.154419e-03 |   2.468903e-02 |           256 |
|  LBFGS |      1 |            6 |  2.738163e+00 |  1.000000e+00 |  5.949008e-02 |   9.476263e-02 |           256 |
|  LBFGS |      1 |            7 |  2.719146e+00 |  1.000000e+00 |  1.699717e-02 |   1.849972e-02 |           256 |
|  LBFGS |      1 |            8 |  2.705941e+00 |  1.000000e+00 |  3.116147e-02 |   4.152590e-02 |           256 |
|  LBFGS |      1 |            9 |  2.701162e+00 |  1.000000e+00 |  5.665722e-03 |   9.401466e-03 |           256 |
|  LBFGS |      1 |           10 |  2.695341e+00 |  5.000000e-01 |  3.116147e-02 |   4.968046e-02 |           256 |
|  LBFGS |      1 |           11 |  2.691277e+00 |  1.000000e+00 |  8.498584e-03 |   1.017446e-02 |           256 |
|  LBFGS |      1 |           12 |  2.689972e+00 |  1.000000e+00 |  1.983003e-02 |   9.938921e-03 |           256 |
|  LBFGS |      1 |           13 |  2.688979e+00 |  1.000000e+00 |  1.416431e-02 |   6.606316e-03 |           256 |
|  LBFGS |      1 |           14 |  2.687787e+00 |  1.000000e+00 |  1.621956e-03 |   7.089542e-03 |           256 |
|  LBFGS |      1 |           15 |  2.686539e+00 |  1.000000e+00 |  1.699717e-02 |   1.169701e-02 |           256 |
|  LBFGS |      1 |           16 |  2.685356e+00 |  1.000000e+00 |  1.133144e-02 |   1.069310e-02 |           256 |
|  LBFGS |      1 |           17 |  2.685021e+00 |  5.000000e-01 |  1.133144e-02 |   2.104248e-02 |           256 |
|  LBFGS |      1 |           18 |  2.684002e+00 |  1.000000e+00 |  2.832861e-03 |   6.175231e-03 |           256 |
|  LBFGS |      1 |           19 |  2.683507e+00 |  1.000000e+00 |  5.665722e-03 |   3.724026e-03 |           256 |
|  LBFGS |      1 |           20 |  2.683343e+00 |  5.000000e-01 |  5.665722e-03 |   9.549119e-03 |           256 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           21 |  2.682897e+00 |  1.000000e+00 |  5.665722e-03 |   7.172867e-03 |           256 |
|  LBFGS |      1 |           22 |  2.682682e+00 |  1.000000e+00 |  2.832861e-03 |   2.587726e-03 |           256 |
|  LBFGS |      1 |           23 |  2.682485e+00 |  1.000000e+00 |  2.832861e-03 |   2.953648e-03 |           256 |
|  LBFGS |      1 |           24 |  2.682326e+00 |  1.000000e+00 |  2.832861e-03 |   7.777294e-03 |           256 |
|  LBFGS |      1 |           25 |  2.681914e+00 |  1.000000e+00 |  2.832861e-03 |   2.778555e-03 |           256 |
|  LBFGS |      1 |           26 |  2.681867e+00 |  5.000000e-01 |  1.031085e-03 |   3.638352e-03 |           256 |
|  LBFGS |      1 |           27 |  2.681725e+00 |  1.000000e+00 |  5.665722e-03 |   1.515199e-03 |           256 |
|  LBFGS |      1 |           28 |  2.681692e+00 |  5.000000e-01 |  1.314940e-03 |   1.850055e-03 |           256 |
|  LBFGS |      1 |           29 |  2.681625e+00 |  1.000000e+00 |  2.832861e-03 |   1.456903e-03 |           256 |
|  LBFGS |      1 |           30 |  2.681594e+00 |  5.000000e-01 |  2.832861e-03 |   8.704875e-04 |           256 |
|  LBFGS |      1 |           31 |  2.681581e+00 |  5.000000e-01 |  8.498584e-03 |   3.934768e-04 |           256 |
|  LBFGS |      1 |           32 |  2.681579e+00 |  1.000000e+00 |  8.498584e-03 |   1.847866e-03 |           256 |
|  LBFGS |      1 |           33 |  2.681553e+00 |  1.000000e+00 |  9.857038e-04 |   6.509825e-04 |           256 |
|  LBFGS |      1 |           34 |  2.681541e+00 |  5.000000e-01 |  8.498584e-03 |   6.635528e-04 |           256 |
|  LBFGS |      1 |           35 |  2.681499e+00 |  1.000000e+00 |  5.665722e-03 |   6.194735e-04 |           256 |
|  LBFGS |      1 |           36 |  2.681493e+00 |  5.000000e-01 |  1.133144e-02 |   1.617763e-03 |           256 |
|  LBFGS |      1 |           37 |  2.681473e+00 |  1.000000e+00 |  9.869233e-04 |   8.418484e-04 |           256 |
|  LBFGS |      1 |           38 |  2.681469e+00 |  1.000000e+00 |  5.665722e-03 |   1.069722e-03 |           256 |
|  LBFGS |      1 |           39 |  2.681432e+00 |  1.000000e+00 |  2.832861e-03 |   8.501930e-04 |           256 |
|  LBFGS |      1 |           40 |  2.681423e+00 |  2.500000e-01 |  1.133144e-02 |   9.543716e-04 |           256 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           41 |  2.681416e+00 |  1.000000e+00 |  2.832861e-03 |   8.763251e-04 |           256 |
|  LBFGS |      1 |           42 |  2.681413e+00 |  5.000000e-01 |  2.832861e-03 |   4.101888e-04 |           256 |
|  LBFGS |      1 |           43 |  2.681403e+00 |  1.000000e+00 |  5.665722e-03 |   2.713209e-04 |           256 |
|  LBFGS |      1 |           44 |  2.681392e+00 |  1.000000e+00 |  2.832861e-03 |   2.115241e-04 |           256 |
|  LBFGS |      1 |           45 |  2.681383e+00 |  1.000000e+00 |  2.832861e-03 |   2.872858e-04 |           256 |
|  LBFGS |      1 |           46 |  2.681374e+00 |  1.000000e+00 |  8.498584e-03 |   5.771001e-04 |           256 |
|  LBFGS |      1 |           47 |  2.681353e+00 |  1.000000e+00 |  2.832861e-03 |   3.160871e-04 |           256 |
|  LBFGS |      1 |           48 |  2.681334e+00 |  5.000000e-01 |  8.498584e-03 |   1.045502e-03 |           256 |
|  LBFGS |      1 |           49 |  2.681314e+00 |  1.000000e+00 |  7.878714e-04 |   1.505118e-03 |           256 |
|  LBFGS |      1 |           50 |  2.681306e+00 |  1.000000e+00 |  2.832861e-03 |   4.756894e-04 |           256 |
|  LBFGS |      1 |           51 |  2.681301e+00 |  1.000000e+00 |  1.133144e-02 |   3.664873e-04 |           256 |
|  LBFGS |      1 |           52 |  2.681288e+00 |  1.000000e+00 |  2.832861e-03 |   1.449821e-04 |           256 |
|  LBFGS |      1 |           53 |  2.681287e+00 |  2.500000e-01 |  1.699717e-02 |   2.357176e-04 |           256 |
|  LBFGS |      1 |           54 |  2.681282e+00 |  1.000000e+00 |  5.665722e-03 |   2.046663e-04 |           256 |
|  LBFGS |      1 |           55 |  2.681278e+00 |  1.000000e+00 |  2.832861e-03 |   2.546349e-04 |           256 |
|  LBFGS |      1 |           56 |  2.681276e+00 |  2.500000e-01 |  1.307940e-03 |   1.966786e-04 |           256 |
|  LBFGS |      1 |           57 |  2.681274e+00 |  5.000000e-01 |  1.416431e-02 |   1.005310e-04 |           256 |
|  LBFGS |      1 |           58 |  2.681271e+00 |  5.000000e-01 |  1.118892e-03 |   1.147324e-04 |           256 |
|  LBFGS |      1 |           59 |  2.681269e+00 |  1.000000e+00 |  2.832861e-03 |   1.332914e-04 |           256 |
|  LBFGS |      1 |           60 |  2.681268e+00 |  2.500000e-01 |  1.132045e-03 |   5.441369e-05 |           256 |
|=================================================================================================================|

Оцените эпсилон-нечувствительную ошибку для тестового набора с помощью обновленной модели.

UpdatedL = loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
UpdatedL = 1.8933

Регрессионная ошибка уменьшается примерно в 1 раз 0.08 после resume обновляет регрессионную модель с помощью дополнительных итераций.

Представлен в R2018a