Классификация изображений на FPGA с помощью квантованной сети DAG

В этом примере вы используете Глубокое Обучение HDL Toolbox, чтобы развернуть квантованную глубокую сверточную нейронную сеть и классифицировать изображение. Пример использует предварительно обученную ResNet-18 сверточную нейронную сеть, чтобы продемонстрировать передачу обучения, квантование и развертывание для квантованной сети. Используйте MATLAB ®, чтобы получить результаты предсказания.

ResNet-18 обучена на более чем миллионе изображений и может классифицировать изображения в 1000 категорий объектов (таких как клавиатура, кофейная кружка, карандаш и многие животные). Сеть изучила представления богатых функций для широкой области значений изображений. Сеть принимает изображение как вход и выводит метку для объекта в изображении вместе с вероятностями для каждой из категорий объектов.

Требуемые продукты

В данном примере вам нужно:

  • Набор инструментов Deep Learning Toolbox ™

  • Deep Learning HDL Toolbox ™

  • Deep Learning Toolbox модель для ResNet-18 сети

  • Пакет поддержки пакета Deep Learning HDL Toolbox для устройств Xilinx FPGA и SoC

  • Image Processing Toolbox ™

  • Библиотека квантования модели Deep Learning Toolbox

  • MATLAB CODER для библиотек глубокого обучения

Передача обучения с помощью Resnet-18

Чтобы выполнить классификацию на новом наборе изображений, вы тонко настраиваете предварительно обученную ResNet-18 сверточную нейронную сеть путем передачи обучения. В передачу обучения можно взять предварительно обученную сеть и использовать ее как начальная точка, чтобы узнать новую задачу. Подстройка сети с передачей обучения обычно намного быстрее и проще, чем обучение сети со случайным образом инициализированными весами с нуля. Можно быстро перенести выученные функции в новую задачу с помощью меньшего количества обучающих изображений.

Загрузка предварительно обученной сети SeriesNetwork

Чтобы загрузить предварительно обученные сетевые ResNet-18, введите:

snet = resnet18;

Чтобы просмотреть слои предварительно обученной последовательной сети, введите:

analyzeNetwork(snet);

Первый слой, входной слой для изображений, требует входа изображений размера 227 227 3, где 3 количество цветовых каналов.

inputSize = snet.Layers(1).InputSize;

Определите наборы данных обучения и валидации

Этот пример использует MathWorks Набор данных MerchData. Это небольшой набор данных, содержащий 75 изображений товаров MathWorks, принадлежащих пяти различным классам (прописная буква, cube, игральные карты, отвертка и факел).

curDir = pwd;
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

Замена конечных слоев

Слой полносвязного слоя и классификации предварительно обученной сети net настроены для 1000 классов. Эти два слоя fc1000 и ClassificationLayer_predictions в ResNet-18 содержат информацию о том, как объединить функции, которые сеть извлекает в вероятности классов и предсказанные метки. Эти два слоя должны быть уточнены для новой задачи классификации. Извлеките все слои, кроме последних двух слоев, из предварительно обученной сети.

lgraph = layerGraph(snet)
lgraph = 
  LayerGraph with properties:

         Layers: [71×1 nnet.cnn.layer.Layer]
    Connections: [78×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

numClasses = numel(categories(imdsTrain.Labels))
numClasses = 5
newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
lgraph = replaceLayer(lgraph,'fc1000',newLearnableLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);

Обучите сеть

Сеть требует изображений входа размера 224 на 224 на 3, но у изображений в хранилищах данных изображения есть различные размеры. Используйте хранилище данных дополненных изображений, чтобы автоматически изменить размер обучающих изображений. Задайте дополнительные операции увеличения для выполнения обучающих изображений, такие как случайное листание обучающих изображений вдоль вертикальной оси и случайное перемещение их до 30 пикселей горизонтально и вертикально. Увеличение количества данных помогает предотвратить сверхподбор кривой сети и запоминание точных деталей обучающих изображений.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange);

Чтобы автоматически изменить размер изображений валидации, не выполняя дальнейшего увеличения данных, используйте хранилище datastore с дополненными изображениями, не задавая никаких дополнительных операций предварительной обработки.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
'DataAugmentation',imageAugmenter);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Задайте опции обучения. Для передачи обучения сохраните функции из ранних слоев предварительно обученной сети (веса переданных слоев). Чтобы замедлить обучение в перенесенных слоях, установите начальную скорость обучения на небольшое значение. Укажите размер мини-пакета и данные валидации. Программное обеспечение проверяет сеть каждый ValidationFrequency итерации во время обучения.

options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',6, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',3, ...
'Verbose',false, ...
'Plots','training-progress');

Обучите сеть, которая состоит из переданного и нового слоев. По умолчанию trainNetwork использует графический процессор, если он доступен (требует Parallel Computing Toolbox™ и поддерживаемое устройство GPU. Для получения дополнительной информации смотрите Поддержку GPU by Release (Parallel Computing Toolbox)). В противном случае в сети используется центральный процессор (для глубокого обучения требуется MATLAB Coder Interface Libraries™). Можно также задать окружение выполнения с помощью 'ExecutionEnvironment' аргумент имя-значение trainingOptions.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);

Квантование сети

Создайте dlquantizer объект и укажите сеть для квантования.

dlquantObj = dlquantizer(netTransfer,'ExecutionEnvironment','FPGA');

Калибровка объекта квантованной сети

Используйте calibrate функция для упражнения сети с выборочными входами и сбора информации о области значений. The calibrate функция реализует сеть и собирает динамические области значений весов и смещений в свертках и полносвязных слоях сети и динамические области значений активаций во всех слоях сети. The calibrate функция возвращает таблицу. Каждая строка таблицы содержит информацию о области значений для настраиваемого параметра квантованной сети.

dlquantObj.calibrate(augimdsTrain)
ans=95×5 table
       Optimized Layer Name       Network Layer Name    Learnables / Activations    MinValue    MaxValue
    __________________________    __________________    ________________________    ________    ________

    {'conv1_Weights'         }    {'bn_conv1'     }            "Weights"            -0.86045     1.3675 
    {'conv1_Bias'            }    {'bn_conv1'     }            "Bias"               -0.66706    0.67651 
    {'res2a_branch2a_Weights'}    {'bn2a_branch2a'}            "Weights"            -0.40354    0.34824 
    {'res2a_branch2a_Bias'   }    {'bn2a_branch2a'}            "Bias"                -0.7954     1.3412 
    {'res2a_branch2b_Weights'}    {'bn2a_branch2b'}            "Weights"            -0.75855     0.5863 
    {'res2a_branch2b_Bias'   }    {'bn2a_branch2b'}            "Bias"                -1.3406     1.7593 
    {'res2b_branch2a_Weights'}    {'bn2b_branch2a'}            "Weights"            -0.32464    0.35274 
    {'res2b_branch2a_Bias'   }    {'bn2b_branch2a'}            "Bias"                -1.1606     1.5388 
    {'res2b_branch2b_Weights'}    {'bn2b_branch2b'}            "Weights"             -1.1713    0.95244 
    {'res2b_branch2b_Bias'   }    {'bn2b_branch2b'}            "Bias"               -0.73906     1.2628 
    {'res3a_branch2a_Weights'}    {'bn3a_branch2a'}            "Weights"            -0.19423     0.2396 
    {'res3a_branch2a_Bias'   }    {'bn3a_branch2a'}            "Bias"               -0.53868    0.69323 
    {'res3a_branch2b_Weights'}    {'bn3a_branch2b'}            "Weights"            -0.53801    0.73706 
    {'res3a_branch2b_Bias'   }    {'bn3a_branch2b'}            "Bias"                -0.6457     1.1458 
    {'res3a_branch1_Weights' }    {'bn3a_branch1' }            "Weights"            -0.64085    0.98864 
    {'res3a_branch1_Bias'    }    {'bn3a_branch1' }            "Bias"                -0.9258    0.76574 
      ⋮

Создайте целевой объект

Используйте dlhdl.Target Класс создать целевой объект с пользовательским именем для целевого устройства и интерфейсом для подключения целевого устройства к хосту-компьютеру. Опции интерфейса JTAG и Ethernet. Чтобы использовать JTAG, Установите Xilinx™ Vivado™ Design Suite 2019.2. Чтобы задать траекторию инструмента Xilinx Vivado, введите:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');
hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Создайте объект рабочий процесс

Используйте dlhdl.Workflow класс, чтобы создать объект. Когда вы создаете объект, задайте сеть и имя битового потока. Укажите сохраненную предварительно обученную нейронную сеть alexnet в качестве сети. Убедитесь, что имя битового потока соответствует типу данных и плате FPGA, на которую вы нацелены. В этом примере целевой платой FPGA является плата Xilinx ZCU102 SoC. Битовый поток использует один тип данных.

hW = dlhdl.Workflow('Network', dlquantObj, 'Bitstream', 'zcu102_int8','Target',hTarget);

Скомпилируйте сеть netTransfer DAG

Чтобы скомпилировать сеть netTransfer DAG, запустите метод компиляции dlhdl.Workflow объект. Вы можете опционально задать максимальное количество входных кадров.

dn = hW.compile('InputFrameNumberLimit',15)
### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_int8 ...
### The network includes the following layers:

     1   'data'                  Image Input              224×224×3 images with 'zscore' normalization                          (SW Layer)
     2   'conv1'                 Convolution              64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3]     (HW Layer)
     3   'bn_conv1'              Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
     4   'conv1_relu'            ReLU                     ReLU                                                                  (HW Layer)
     5   'pool1'                 Max Pooling              3×3 max pooling with stride [2  2] and padding [1  1  1  1]           (HW Layer)
     6   'res2a_branch2a'        Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
     7   'bn2a_branch2a'         Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
     8   'res2a_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
     9   'res2a_branch2b'        Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    10   'bn2a_branch2b'         Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
    11   'res2a'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    12   'res2a_relu'            ReLU                     ReLU                                                                  (HW Layer)
    13   'res2b_branch2a'        Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    14   'bn2b_branch2a'         Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
    15   'res2b_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    16   'res2b_branch2b'        Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]    (HW Layer)
    17   'bn2b_branch2b'         Batch Normalization      Batch normalization with 64 channels                                  (HW Layer)
    18   'res2b'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    19   'res2b_relu'            ReLU                     ReLU                                                                  (HW Layer)
    20   'res3a_branch2a'        Convolution              128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
    21   'bn3a_branch2a'         Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    22   'res3a_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    23   'res3a_branch2b'        Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    24   'bn3a_branch2b'         Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    25   'res3a'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    26   'res3a_relu'            ReLU                     ReLU                                                                  (HW Layer)
    27   'res3a_branch1'         Convolution              128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0]   (HW Layer)
    28   'bn3a_branch1'          Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    29   'res3b_branch2a'        Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    30   'bn3b_branch2a'         Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    31   'res3b_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    32   'res3b_branch2b'        Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    33   'bn3b_branch2b'         Batch Normalization      Batch normalization with 128 channels                                 (HW Layer)
    34   'res3b'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    35   'res3b_relu'            ReLU                     ReLU                                                                  (HW Layer)
    36   'res4a_branch2a'        Convolution              256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    37   'bn4a_branch2a'         Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    38   'res4a_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    39   'res4a_branch2b'        Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'bn4a_branch2b'         Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    41   'res4a'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    42   'res4a_relu'            ReLU                     ReLU                                                                  (HW Layer)
    43   'res4a_branch1'         Convolution              256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    44   'bn4a_branch1'          Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    45   'res4b_branch2a'        Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    46   'bn4b_branch2a'         Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    47   'res4b_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    48   'res4b_branch2b'        Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    49   'bn4b_branch2b'         Batch Normalization      Batch normalization with 256 channels                                 (HW Layer)
    50   'res4b'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    51   'res4b_relu'            ReLU                     ReLU                                                                  (HW Layer)
    52   'res5a_branch2a'        Convolution              512 3×3×256 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
    53   'bn5a_branch2a'         Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    54   'res5a_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    55   'res5a_branch2b'        Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    56   'bn5a_branch2b'         Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    57   'res5a'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    58   'res5a_relu'            ReLU                     ReLU                                                                  (HW Layer)
    59   'res5a_branch1'         Convolution              512 1×1×256 convolutions with stride [2  2] and padding [0  0  0  0]  (HW Layer)
    60   'bn5a_branch1'          Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    61   'res5b_branch2a'        Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    62   'bn5b_branch2a'         Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    63   'res5b_branch2a_relu'   ReLU                     ReLU                                                                  (HW Layer)
    64   'res5b_branch2b'        Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    65   'bn5b_branch2b'         Batch Normalization      Batch normalization with 512 channels                                 (HW Layer)
    66   'res5b'                 Addition                 Element-wise addition of 2 inputs                                     (HW Layer)
    67   'res5b_relu'            ReLU                     ReLU                                                                  (HW Layer)
    68   'pool5'                 Global Average Pooling   Global average pooling                                                (HW Layer)
    69   'new_fc'                Fully Connected          5 fully connected layer                                               (HW Layer)
    70   'prob'                  Softmax                  softmax                                                               (SW Layer)
    71   'new_classoutput'       Classification Output    crossentropyex with 'MathWorks Cap' and 4 other classes               (SW Layer)

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
5 Memory Regions created.

Skipping: data
Compiling leg: conv1>>pool1 ...
Compiling leg: conv1>>pool1 ... complete.
Compiling leg: res2a_branch2a>>res2a_branch2b ...
Compiling leg: res2a_branch2a>>res2a_branch2b ... complete.
Compiling leg: res2b_branch2a>>res2b_branch2b ...
Compiling leg: res2b_branch2a>>res2b_branch2b ... complete.
Compiling leg: res3a_branch1 ...
Compiling leg: res3a_branch1 ... complete.
Compiling leg: res3a_branch2a>>res3a_branch2b ...
Compiling leg: res3a_branch2a>>res3a_branch2b ... complete.
Compiling leg: res3b_branch2a>>res3b_branch2b ...
Compiling leg: res3b_branch2a>>res3b_branch2b ... complete.
Compiling leg: res4a_branch1 ...
Compiling leg: res4a_branch1 ... complete.
Compiling leg: res4a_branch2a>>res4a_branch2b ...
Compiling leg: res4a_branch2a>>res4a_branch2b ... complete.
Compiling leg: res4b_branch2a>>res4b_branch2b ...
Compiling leg: res4b_branch2a>>res4b_branch2b ... complete.
Compiling leg: res5a_branch1 ...
Compiling leg: res5a_branch1 ... complete.
Compiling leg: res5a_branch2a>>res5a_branch2b ...
Compiling leg: res5a_branch2a>>res5a_branch2b ... complete.
Compiling leg: res5b_branch2a>>res5b_branch2b ...
Compiling leg: res5b_branch2a>>res5b_branch2b ... complete.
Compiling leg: pool5 ...
Compiling leg: pool5 ... complete.
Compiling leg: new_fc ...
Compiling leg: new_fc ... complete.
Skipping: prob
Skipping: new_classoutput
Creating Schedule...
.............................
Creating Schedule...complete.
Creating Status Table...
............................
Creating Status Table...complete.
Emitting Schedule...
..........................
Emitting Schedule...complete.
Emitting Status Table...
..............................
Emitting Status Table...complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"       
    "OutputResultOffset"        "0x01800000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x01c00000"     "4.0 MB"        
    "SystemBufferOffset"        "0x02000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x04000000"     "16.0 MB"       
    "FCWeightDataOffset"        "0x05000000"     "4.0 MB"        
    "EndOffset"                 "0x05400000"     "Total: 84.0 MB"

### Network compilation complete.
dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]

Программа Bitstream на FPGA и загрузка сетевых весов

Чтобы развернуть сеть на оборудовании Xilinx ZCU102, запустите функцию развертывания dlhdl.Workflow объект. Эта функция использует выход функции компиляции, чтобы запрограммировать плату FPGA с помощью файла программирования. Он также загружает веса и смещения сети. Функция развертывания начинает программировать устройство FPGA, отображает сообщения о прогрессе и времени развертывания сети.

hW.deploy
### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.


System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 11-Jan-2021 11:26:16
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 11-Jan-2021 11:26:16

Загрузка изображения для предсказания

Загрузите пример изображения.

imgFile = fullfile(pwd,'MerchData','MathWorks Cube','Mathworks cube_0.jpg');
inputImg = imresize(imread(imgFile),[224 224]);
imshow(inputImg)

Запуск предсказания для одного изображения

Выполните метод предсказания на dlhdl.Workflow Объект и затем отобразите метку в командном окне MATLAB.

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');
### Finished writing input activations.
### Running single input activations.


              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7323615                  0.02929                       1            7323615             34.1
    conv1                  1111619                  0.00445 
    pool1                   235563                  0.00094 
    res2a_branch2a          268736                  0.00107 
    res2a_branch2b          269031                  0.00108 
    res2a                    94319                  0.00038 
    res2b_branch2a          268677                  0.00107 
    res2b_branch2b          268863                  0.00108 
    res2b                    94255                  0.00038 
    res3a_branch1           155156                  0.00062 
    res3a_branch2a          226445                  0.00091 
    res3a_branch2b          243593                  0.00097 
    res3a                    47248                  0.00019 
    res3b_branch2a          243461                  0.00097 
    res3b_branch2b          243581                  0.00097 
    res3b                    47232                  0.00019 
    res4a_branch1           133899                  0.00054 
    res4a_branch2a          134402                  0.00054 
    res4a_branch2b          234184                  0.00094 
    res4a                    23628                  0.00009 
    res4b_branch2a          234058                  0.00094 
    res4b_branch2b          234648                  0.00094 
    res4b                    23756                  0.00010 
    res5a_branch1           310730                  0.00124 
    res5a_branch2a          310810                  0.00124 
    res5a_branch2b          595374                  0.00238 
    res5a                    11827                  0.00005 
    res5b_branch2a          595150                  0.00238 
    res5b_branch2b          595904                  0.00238 
    res5b                    12012                  0.00005 
    pool5                    35870                  0.00014 
    new_fc                   17811                  0.00007 
 * The clock frequency of the DL processor is: 250MHz
[val, idx] = max(prediction);
dlquantObj.NetworkObject.Layers(end).ClassNames{idx}
ans = 
'MathWorks Cube'