В этом примере показано, как обучить, скомпилировать и развернуть dlhdl.Workflow
объект, который имеет ResNet-18 в качестве объекта сети при помощи пакета поддержки Deep Learning HDL Toolbox™ для Xilinx FPGA и SoC. Используйте MATLAB ®, чтобы получить результаты предсказания с целевого устройства .
В данном примере вам нужно:
Набор инструментов Deep Learning Toolbox ™
Deep Learning HDL Toolbox ™
Deep Learning Toolbox модель для ResNet-18 сети
Пакет поддержки пакета Deep Learning HDL Toolbox для устройств Xilinx FPGA и SoC
Image Processing Toolbox ™
Чтобы загрузить предварительно обученные сетевые ResNet-18, введите:
snet = resnet18;
Чтобы просмотреть слои предварительно обученной последовательной сети, введите:
analyzeNetwork(snet);
Первый слой, входной слой для изображений, требует входа изображений размера 227 227 3, где 3 количество цветовых каналов.
inputSize = snet.Layers(1).InputSize;
Этот пример использует MathWorks
Набор данных MerchData. Это небольшой набор данных, содержащий 75 изображений товаров MathWorks, принадлежащих пяти различным классам (прописная буква, cube, игральные карты, отвертка и факел).
curDir = pwd; unzip('MerchData.zip'); imds = imageDatastore('MerchData', ... 'IncludeSubfolders',true, ... 'LabelSource','foldernames'); [imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
Слой полносвязного слоя и классификации предварительно обученной сети net
настроены для 1000 классов. Эти два слоя fc1000
и ClassificationLayer_predictions
в ResNet-18 содержат информацию о том, как объединить функции, которые сеть извлекает в вероятности классов и предсказанные метки. Эти два слоя должны быть уточнены для новой задачи классификации. Извлеките все слои, кроме последних двух слоев, из предварительно обученной сети.
lgraph = layerGraph(snet)
lgraph = LayerGraph with properties: Layers: [71×1 nnet.cnn.layer.Layer] Connections: [78×2 table] InputNames: {'data'} OutputNames: {'ClassificationLayer_predictions'}
numClasses = numel(categories(imdsTrain.Labels))
numClasses = 5
newLearnableLayer = fullyConnectedLayer(numClasses, ... 'Name','new_fc', ... 'WeightLearnRateFactor',10, ... 'BiasLearnRateFactor',10); lgraph = replaceLayer(lgraph,'fc1000',newLearnableLayer); newClassLayer = classificationLayer('Name','new_classoutput'); lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
Сеть требует изображений входа размера 224 на 224 на 3, но у изображений в хранилищах данных изображения есть различные размеры. Используйте хранилище данных дополненных изображений, чтобы автоматически изменить размер обучающих изображений. Задайте дополнительные операции увеличения для выполнения обучающих изображений, такие как случайное листание обучающих изображений вдоль вертикальной оси и случайное перемещение их до 30 пикселей горизонтально и вертикально. Увеличение количества данных помогает предотвратить сверхподбор кривой сети и запоминание точных деталей обучающих изображений.
pixelRange = [-30 30]; imageAugmenter = imageDataAugmenter( ... 'RandXReflection',true, ... 'RandXTranslation',pixelRange, ... 'RandYTranslation',pixelRange);
Чтобы автоматически изменить размер изображений валидации, не выполняя дальнейшего увеличения данных, используйте хранилище datastore с дополненными изображениями, не задавая никаких дополнительных операций предварительной обработки.
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ... 'DataAugmentation',imageAugmenter); augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
Задайте опции обучения. Для передачи обучения сохраните функции из ранних слоев предварительно обученной сети (веса переданных слоев). Чтобы замедлить обучение в перенесенных слоях, установите начальную скорость обучения на небольшое значение. Укажите размер мини-пакета и данные валидации. Программное обеспечение проверяет сеть каждый ValidationFrequency
итерации во время обучения.
options = trainingOptions('sgdm', ... 'MiniBatchSize',10, ... 'MaxEpochs',6, ... 'InitialLearnRate',1e-4, ... 'Shuffle','every-epoch', ... 'ValidationData',augimdsValidation, ... 'ValidationFrequency',3, ... 'Verbose',false, ... 'Plots','training-progress');
Обучите сеть, которая состоит из переданного и нового слоев. По умолчанию trainNetwork
использует графический процессор, если он доступен (требует Parallel Computing Toolbox™ и поддерживаемое устройство GPU. Для получения дополнительной информации смотрите Поддержку GPU by Release (Parallel Computing Toolbox)). В противном случае в сети используется центральный процессор (для глубокого обучения требуется MATLAB Coder Interface Libraries™). Можно также задать окружение выполнения с помощью 'ExecutionEnvironment'
аргумент имя-значение trainingOptions
.
netTransfer = trainNetwork(augimdsTrain,lgraph,options);
Используйте dlhdl.Target
Класс создать целевой объект с пользовательским именем для целевого устройства и интерфейсом для подключения целевого устройства к хосту-компьютеру. Опции интерфейса JTAG и Ethernet. Чтобы использовать JTAG, Установите Xilinx™ Vivado™ Design Suite 2019.2. Чтобы задать траекторию инструмента Xilinx Vivado, введите:
% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');
hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');
Используйте dlhdl.Workflow
класс, чтобы создать объект. Когда вы создаете объект, задайте сеть и имя битового потока. Укажите сохраненную предварительно обученную нейронную сеть alexnet в качестве сети. Убедитесь, что имя битового потока соответствует типу данных и плате FPGA, на которую вы нацелены. В этом примере целевой платой FPGA является плата Xilinx ZCU102 SoC. Битовый поток использует один тип данных.
hW = dlhdl.Workflow('Network', netTransfer, 'Bitstream', 'zcu102_single','Target',hTarget);
Чтобы скомпилировать сеть netTransfer DAG, запустите метод компиляции dlhdl.Workflow
объект. Вы можете опционально задать максимальное количество входных кадров.
dn = hW.compile('InputFrameNumberLimit',15)
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_single ... ### The network includes the following layers: 1 'data' Image Input 224×224×3 images with 'zscore' normalization (SW Layer) 2 'conv1' Convolution 64 7×7×3 convolutions with stride [2 2] and padding [3 3 3 3] (HW Layer) 3 'bn_conv1' Batch Normalization Batch normalization with 64 channels (HW Layer) 4 'conv1_relu' ReLU ReLU (HW Layer) 5 'pool1' Max Pooling 3×3 max pooling with stride [2 2] and padding [1 1 1 1] (HW Layer) 6 'res2a_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 7 'bn2a_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 8 'res2a_branch2a_relu' ReLU ReLU (HW Layer) 9 'res2a_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 10 'bn2a_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 11 'res2a' Addition Element-wise addition of 2 inputs (HW Layer) 12 'res2a_relu' ReLU ReLU (HW Layer) 13 'res2b_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 14 'bn2b_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 15 'res2b_branch2a_relu' ReLU ReLU (HW Layer) 16 'res2b_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 17 'bn2b_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 18 'res2b' Addition Element-wise addition of 2 inputs (HW Layer) 19 'res2b_relu' ReLU ReLU (HW Layer) 20 'res3a_branch2a' Convolution 128 3×3×64 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 21 'bn3a_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 22 'res3a_branch2a_relu' ReLU ReLU (HW Layer) 23 'res3a_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 24 'bn3a_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 25 'res3a' Addition Element-wise addition of 2 inputs (HW Layer) 26 'res3a_relu' ReLU ReLU (HW Layer) 27 'res3a_branch1' Convolution 128 1×1×64 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 28 'bn3a_branch1' Batch Normalization Batch normalization with 128 channels (HW Layer) 29 'res3b_branch2a' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 30 'bn3b_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 31 'res3b_branch2a_relu' ReLU ReLU (HW Layer) 32 'res3b_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 33 'bn3b_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 34 'res3b' Addition Element-wise addition of 2 inputs (HW Layer) 35 'res3b_relu' ReLU ReLU (HW Layer) 36 'res4a_branch2a' Convolution 256 3×3×128 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 37 'bn4a_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 38 'res4a_branch2a_relu' ReLU ReLU (HW Layer) 39 'res4a_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 40 'bn4a_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 41 'res4a' Addition Element-wise addition of 2 inputs (HW Layer) 42 'res4a_relu' ReLU ReLU (HW Layer) 43 'res4a_branch1' Convolution 256 1×1×128 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 44 'bn4a_branch1' Batch Normalization Batch normalization with 256 channels (HW Layer) 45 'res4b_branch2a' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 46 'bn4b_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 47 'res4b_branch2a_relu' ReLU ReLU (HW Layer) 48 'res4b_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 49 'bn4b_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 50 'res4b' Addition Element-wise addition of 2 inputs (HW Layer) 51 'res4b_relu' ReLU ReLU (HW Layer) 52 'res5a_branch2a' Convolution 512 3×3×256 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 53 'bn5a_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 54 'res5a_branch2a_relu' ReLU ReLU (HW Layer) 55 'res5a_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 56 'bn5a_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 57 'res5a' Addition Element-wise addition of 2 inputs (HW Layer) 58 'res5a_relu' ReLU ReLU (HW Layer) 59 'res5a_branch1' Convolution 512 1×1×256 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 60 'bn5a_branch1' Batch Normalization Batch normalization with 512 channels (HW Layer) 61 'res5b_branch2a' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 62 'bn5b_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 63 'res5b_branch2a_relu' ReLU ReLU (HW Layer) 64 'res5b_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 65 'bn5b_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 66 'res5b' Addition Element-wise addition of 2 inputs (HW Layer) 67 'res5b_relu' ReLU ReLU (HW Layer) 68 'pool5' Global Average Pooling Global average pooling (HW Layer) 69 'new_fc' Fully Connected 5 fully connected layer (HW Layer) 70 'prob' Softmax softmax (SW Layer) 71 'new_classoutput' Classification Output crossentropyex with 'MathWorks Cap' and 4 other classes (SW Layer) ### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' 5 Memory Regions created. Skipping: data Compiling leg: conv1>>pool1 ... Compiling leg: conv1>>pool1 ... complete. Compiling leg: res2a_branch2a>>res2a_branch2b ... Compiling leg: res2a_branch2a>>res2a_branch2b ... complete. Compiling leg: res2b_branch2a>>res2b_branch2b ... Compiling leg: res2b_branch2a>>res2b_branch2b ... complete. Compiling leg: res3a_branch1 ... Compiling leg: res3a_branch1 ... complete. Compiling leg: res3a_branch2a>>res3a_branch2b ... Compiling leg: res3a_branch2a>>res3a_branch2b ... complete. Compiling leg: res3b_branch2a>>res3b_branch2b ... Compiling leg: res3b_branch2a>>res3b_branch2b ... complete. Compiling leg: res4a_branch1 ... Compiling leg: res4a_branch1 ... complete. Compiling leg: res4a_branch2a>>res4a_branch2b ... Compiling leg: res4a_branch2a>>res4a_branch2b ... complete. Compiling leg: res4b_branch2a>>res4b_branch2b ... Compiling leg: res4b_branch2a>>res4b_branch2b ... complete. Compiling leg: res5a_branch1 ... Compiling leg: res5a_branch1 ... complete. Compiling leg: res5a_branch2a>>res5a_branch2b ... Compiling leg: res5a_branch2a>>res5a_branch2b ... complete. Compiling leg: res5b_branch2a>>res5b_branch2b ... Compiling leg: res5b_branch2a>>res5b_branch2b ... complete. Compiling leg: pool5 ... Compiling leg: pool5 ... complete. Compiling leg: new_fc ... Compiling leg: new_fc ... complete. Skipping: prob Skipping: new_classoutput Creating Schedule... ........................... Creating Schedule...complete. Creating Status Table... .......................... Creating Status Table...complete. Emitting Schedule... .......................... Emitting Schedule...complete. Emitting Status Table... ............................ Emitting Status Table...complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "12.0 MB" "OutputResultOffset" "0x00c00000" "4.0 MB" "SchedulerDataOffset" "0x01000000" "4.0 MB" "SystemBufferOffset" "0x01400000" "28.0 MB" "InstructionDataOffset" "0x03000000" "4.0 MB" "ConvWeightDataOffset" "0x03400000" "52.0 MB" "FCWeightDataOffset" "0x06800000" "4.0 MB" "EndOffset" "0x06c00000" "Total: 108.0 MB" ### Network compilation complete.
dn = struct with fields:
weights: [1×1 struct]
instructions: [1×1 struct]
registers: [1×1 struct]
syncInstructions: [1×1 struct]
Чтобы развернуть сеть на оборудовании Xilinx ZCU102, запустите функцию развертывания dlhdl.Workflow
объект. Эта функция использует выход функции компиляции, чтобы запрограммировать плату FPGA с помощью файла программирования. Он также загружает веса и смещения сети. Функция развертывания начинает программировать устройство FPGA, отображает сообщения о прогрессе и времени развертывания сети.
hW.deploy
### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA. ### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
Загрузите пример изображения.
imgFile = fullfile(pwd,'MerchData','MathWorks Cube','Mathworks cube_0.jpg'); inputImg = imresize(imread(imgFile),[224 224]); imshow(inputImg)
Выполните метод предсказания на dlhdl.Workflow
Объект и затем отобразите метку в командном окне MATLAB.
[prediction, speed] = hW.predict(single(inputImg),'Profile','on');
### Finished writing input activations. ### Running single input activations. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 23470681 0.10668 1 23470681 9.4 conv1 2224133 0.01011 pool1 573009 0.00260 res2a_branch2a 972706 0.00442 res2a_branch2b 972715 0.00442 res2a 210584 0.00096 res2b_branch2a 972670 0.00442 res2b_branch2b 973171 0.00442 res2b 210235 0.00096 res3a_branch1 538433 0.00245 res3a_branch2a 746681 0.00339 res3a_branch2b 904757 0.00411 res3a 104923 0.00048 res3b_branch2a 904442 0.00411 res3b_branch2b 904234 0.00411 res3b 105019 0.00048 res4a_branch1 485689 0.00221 res4a_branch2a 486053 0.00221 res4a_branch2b 880357 0.00400 res4a 52814 0.00024 res4b_branch2a 880122 0.00400 res4b_branch2b 880268 0.00400 res4b 52492 0.00024 res5a_branch1 1056215 0.00480 res5a_branch2a 1056269 0.00480 res5a_branch2b 2057399 0.00935 res5a 26272 0.00012 res5b_branch2a 2057349 0.00935 res5b_branch2b 2057639 0.00935 res5b 26409 0.00012 pool5 71402 0.00032 new_fc 24650 0.00011 * The clock frequency of the DL processor is: 220MHz
[val, idx] = max(prediction); netTransfer.Layers(end).ClassNames{idx}
ans = 'MathWorks Cube'