validate

Квантование и валидация глубокой нейронной сети

Описание

validationResults = validate(quantObj, valData) квантует веса, смещения и активации в слоях свертки сети и подтверждает сеть, заданную dlquantizer объект, quantObj и использование данных, заданных valData.

validationResults = validate(quantObj, valData, quantOpts) квантует веса, смещения и активации в слоях свертки сети и подтверждает сеть, заданную dlquantizer объект, quantObj, с использованием данных, заданных valDataи необязательный аргумент quantOpts который задает метрическую функцию для оценки эффективности квантованной сети.

Чтобы узнать о продуктах, необходимых для квантования глубокой нейронной сети, смотрите Необходимые условия рабочего процесса квантования.

Примеры

свернуть все

Этот пример показывает, как квантовать настраиваемые параметры в слоях свертки нейронной сети и исследовать поведение квантованной сети. В этом примере вы квантуете squeezenet нейронная сеть после переобучения сети для классификации новых изображений в соответствии с примером Traind Нейронной Сети для Глубокого Обучения to Classify New Images. В этом примере память, необходимая для сети, уменьшается приблизительно на 75% посредством квантования, в то время как точность сети не зависит.

Загрузите предварительно обученную сеть. net. net - выход сеть примера Train Нейронной сети для глубокого обучения для классификации новых изображений.

net
net = 

  DAGNetwork with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Задайте данные калибровки и валидации, которые будут использоваться для квантования.

Данные калибровки используются для сбора динамических областей значений весов и смещений в свертках и полносвязных слоях сети и динамических областей значений активаций во всех слоях сети. Для наилучших результатов квантования калибровочные данные должны быть показательными для входов в сеть.

Данные валидации используются для тестирования сети после квантования, чтобы понять эффекты ограниченной области значений и точности квантованных слоев свертки в сети.

В этом примере используйте изображения в MerchData набор данных. Задайте augmentedImageDatastore объект для изменения размера данных для сети. Затем разделите данные на наборы данных калибровки и валидации.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

Создайте dlquantizer объект и укажите сеть для квантования.

quantObj = dlquantizer(net);

Задайте метрическую функцию, которая будет использоваться для сравнения поведения сети до и после квантования. Сохраните эту функцию в локальном файле.

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Задайте метрическую функцию в dlquantizationOptions объект.

quantOpts = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, net, aug_valData)});

Используйте calibrate функция для упражнения сети с выборочными входами и сбора информации о области значений. The calibrate функция реализует сеть и собирает динамические области значений весов и смещений в свертках и полносвязных слоях сети и динамические области значений активаций во всех слоях сети. Функция возвращает таблицу. Каждая строка таблицы содержит информацию о области значений для настраиваемого параметра оптимизированной сети.

calResults = calibrate(quantObj, aug_calData)
calResults =

  95x5 table

                   Optimized Layer Name                      Network Layer Name        Learnables / Activations     MinValue      MaxValue  
    __________________________________________________    _________________________    ________________________    __________    ___________

    {'conv1_relu_conv1_Weights'                      }    {'relu_conv1'           }         "Weights"                -0.91985        0.88489
    {'conv1_relu_conv1_Bias'                         }    {'relu_conv1'           }         "Bias"                   -0.07925        0.26343
    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Weights'}    {'fire2-relu_squeeze1x1'}         "Weights"                   -1.38         1.2477
    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Bias'   }    {'fire2-relu_squeeze1x1'}         "Bias"                   -0.11641        0.24273
    {'fire2-expand1x1_fire2-relu_expand1x1_Weights'  }    {'fire2-relu_expand1x1' }         "Weights"                 -0.7406        0.90982
    {'fire2-expand1x1_fire2-relu_expand1x1_Bias'     }    {'fire2-relu_expand1x1' }         "Bias"                  -0.060056        0.14602
    {'fire2-expand3x3_fire2-relu_expand3x3_Weights'  }    {'fire2-relu_expand3x3' }         "Weights"                -0.74397        0.66905
    {'fire2-expand3x3_fire2-relu_expand3x3_Bias'     }    {'fire2-relu_expand3x3' }         "Bias"                  -0.051778       0.074239
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Weights'}    {'fire3-relu_squeeze1x1'}         "Weights"                -0.77263        0.68897
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Bias'   }    {'fire3-relu_squeeze1x1'}         "Bias"                   -0.10141        0.32678
    {'fire3-expand1x1_fire3-relu_expand1x1_Weights'  }    {'fire3-relu_expand1x1' }         "Weights"                -0.72131        0.97287
    {'fire3-expand1x1_fire3-relu_expand1x1_Bias'     }    {'fire3-relu_expand1x1' }         "Bias"                  -0.067043        0.30424
    {'fire3-expand3x3_fire3-relu_expand3x3_Weights'  }    {'fire3-relu_expand3x3' }         "Weights"                -0.61196        0.77431
    {'fire3-expand3x3_fire3-relu_expand3x3_Bias'     }    {'fire3-relu_expand3x3' }         "Bias"                  -0.053612        0.10329
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Weights'}    {'fire4-relu_squeeze1x1'}         "Weights"                -0.74145         1.0888
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Bias'   }    {'fire4-relu_squeeze1x1'}         "Bias"                   -0.10886        0.13882
...

Используйте validate функция для квантования настраиваемых параметров в слоях свертки сети и осуществления сети. Функция использует метрическую функцию, определенную в dlquantizationOptions объект для сравнения результатов сети до и после квантования.

valResults = validate(quantObj, aug_valData, quantOpts)
valResults = 

  struct with fields:

       NumSamples: 20
    MetricResults: [1x1 struct]

Исследуйте MetricResults.Result поле выхода валидации для просмотра эффективности квантованной сети.

valResults.MetricResults.Result
ans =

  2x3 table

    NetworkImplementation    MetricOutput    LearnableParameterMemory(bytes)
    _____________________    ____________    _______________________________

     {'Floating-Point'}           1                    2.9003e+06           
     {'Quantized'     }           1                    7.3393e+05           

В этом примере память, необходимая для сети, была уменьшена приблизительно на 75% за счет квантования. Точность сети не зависит.

Веса, смещения и активации слоев свертки сети, заданные в dlquantizer теперь объект использует масштабированные 8-битные целочисленные типы данных.

Этот пример показывает, как квантовать настраиваемые параметры в слоях свертки нейронной сети и исследовать поведение квантованной сети. В этом примере вы квантуете LogoNet нейронная сеть. Квантование помогает уменьшить потребность глубокой нейронной сети в памяти путем квантования весов, смещений и активаций слоев сети до 8-битных масштабированных целочисленных типов данных. Используйте MATLAB ®, чтобы получить результаты предсказания с целевого устройства .

Чтобы запустить этот пример, вам нужны продукты, перечисленные в FPGA в необходимых условиях «Предпосылки рабочего процесса квантования».

Дополнительные потребности см. в разделе Необходимых условий рабочего процесса квантования.

Создайте файл в вашей текущей рабочей директории под названием getLogoNetwork.m. Введите эти линии в файл:

function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

Загрузите предварительно обученную сеть.

snet = getLogoNetwork();
snet = 

  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Задайте данные калибровки и валидации, которые будут использоваться для квантования.

Данные калибровки используются для сбора динамических областей значений весов и смещений в свертках и полносвязных слоях сети и динамических областей значений активаций во всех слоях сети. Для наилучших результатов квантования калибровочные данные должны быть показательными для входов в сеть.

Данные валидации используются для тестирования сети после квантования, чтобы понять эффекты ограниченной области значений и точности квантованных слоев свертки в сети.

Этот пример использует изображения в logos_dataset набор данных. Задайте augmentedImageDatastore объект для изменения размера данных для сети. Затем разделите данные на наборы данных калибровки и валидации.

curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');

Создайте dlquantizer объект и укажите сеть для квантования.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Используйте calibrate функция для упражнения сети с выборочными входами и сбора информации о области значений. The calibrate функция реализует сеть и собирает динамические области значений весов и смещений в свертках и полносвязных слоях сети и динамические области значений активаций во всех слоях сети. Функция возвращает таблицу. Каждая строка таблицы содержит информацию о области значений для настраиваемого параметра оптимизированной сети.

 dlQuantObj.calibrate(calibrationData)
ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72

Создайте целевой объект с пользовательским именем для вашего целевого устройства и интерфейсом, чтобы подключить ваше целевое устройство к хосту-компьютеру. Опции интерфейса JTAG и Ethernet. Чтобы создать целевой объект, введите:

hTarget = dlhdl.Target('Intel', 'Interface', 'JTAG');

Задайте метрическую функцию, которая будет использоваться для сравнения поведения сети до и после квантования. Сохраните эту функцию в локальном файле.

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% hComputeModelAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx, :)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Задайте метрическую функцию в dlquantizationOptions объект.

options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, snet, validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

Чтобы скомпилировать и развернуть квантованную сеть, запустите validate функция dlquantizer объект. Используйте validate функция для квантования настраиваемых параметров в слоях свертки сети и осуществления сети. Эта функция использует выход функции компиляции, чтобы запрограммировать плату FPGA с помощью файла программирования. Он также загружает веса и смещения сети. Функция развертывания проверяет наличие инструмента Intel Quartus и поддерживаемой версии инструмента. Затем он начинает программировать устройство FPGA с помощью файла sof, отображает сообщения о прогрессе и время развертывания сети. Функция использует метрическую функцию, определенную в dlquantizationOptions объект для сравнения результатов сети до и после квантования.

prediction = dlQuantObj.validate(validationData,options);
           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.


              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz


### Finished writing input activations.
### Running single input activations.


              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz


### Finished writing input activations.
### Running single input activations.


              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz


### Finished writing input activations.
### Running single input activations.


              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz


### Finished writing input activations.
### Running single input activations.


              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz


          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.


              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
        maxpool_1          1545378                  0.01030 
        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz


### Finished writing input activations.
### Running single input activations.


              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

Исследуйте MetricResults.Result поле выхода валидации для просмотра эффективности квантованной сети.

validateOut = prediction.MetricResults.Result
ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Исследуйте QuantizedNetworkFPS поле выхода валидации для просмотра систем координат в секунду эффективности квантованной сети.

prediction.QuantizedNetworkFPS
ans = 11.8126

Веса, смещения и активации слоев свертки сети, заданные в dlquantizer теперь объект использует масштабированные 8-битные целочисленные типы данных.

Этот пример показывает, как квантовать настраиваемые параметры в слоях свертки нейронной сети и подтвердить квантованную сеть. Быстро прототипируйте квантованную сеть с помощью симуляции на основе MATLAB, чтобы подтвердить квантованную сеть. Для этого типа симуляции вам не нужна аппаратная плата FPGA из процесса прототипирования. В этом примере вы квантуете нейронную сеть LogoNet.

В данном примере вам нужны продукты, перечисленные в FPGA в необходимых условиях «Предпосылки рабочего процесса квантования».

Загрузите предварительно обученную сеть и проанализируйте сетевую архитектуру.

snet = getLogoNetwork;
analyzeNetwork(snet);
LogoNet Network architecture

Задайте данные калибровки и валидации, которые будут использоваться для квантования.

Этот пример использует logos_dataset набор данных. Набор данных состоит из 320 изображений. Каждое изображение имеет размер 227 на 227 и имеет три цветовых канала (RGB). Создайте augmentedImageDatastore объект, используемый для калибровки и валидации. Ускорите процесс калибровки и валидации, сократив набор данных калибровки до 20 изображений. Рабочий процесс симуляции MATLAB имеет максимальный предел в пять изображений при проверке квантованной сети. Уменьшите размеры набора данных валидации до пяти изображений.

curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir,'f');
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');
calibrationData_reduced = calibrationData.subset(1:20);
validationData_reduced = validationData.subset(1:5);

Создайте квантованную сеть с помощью dlquantizer объект. Чтобы использовать среду симуляции MATLAB, установите Simulation на on.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA','Simulation','on')

Используйте calibrate функция для упражнения сети с выборочными входами и сбора информации о области значений. calibrate функция реализует сеть и собирает динамические области значений весов и смещений в свертках и полносвязных слоях сети и динамические области значений активаций во всех слоях сети. Функция калибровки возвращает таблицу. Каждая строка таблицы содержит информацию о области значений для настраиваемого параметра квантованной сети.

dlQuantObj.calibrate(calibrationData_reduced)
ans =

  35×5 table

        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }     {'conv_1'     }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }     {'conv_1'     }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }     {'conv_2'     }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }     {'conv_2'     }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }     {'conv_3'     }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }     {'conv_3'     }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }     {'conv_4'     }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }     {'conv_4'     }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }     {'fc_1'       }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }     {'fc_1'       }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }     {'fc_2'       }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }     {'fc_2'       }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }     {'fc_3'       }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }     {'fc_3'       }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }     {'imageinput' }           "Activations"                    0           255
    {'imageinput_normalization'}     {'imageinput' }           "Activations"              -139.34        198.11
    {'conv_1'                  }     {'conv_1'     }           "Activations"              -431.01        290.14
    {'relu_1'                  }     {'relu_1'     }           "Activations"                    0        290.14
    {'maxpool_1'               }     {'maxpool_1'  }           "Activations"                    0        290.14
    {'conv_2'                  }     {'conv_2'     }           "Activations"              -166.41         466.4
    {'relu_2'                  }     {'relu_2'     }           "Activations"                    0         466.4
    {'maxpool_2'               }     {'maxpool_2'  }           "Activations"                    0         466.4
    {'conv_3'                  }     {'conv_3'     }           "Activations"               -219.6        300.65
    {'relu_3'                  }     {'relu_3'     }           "Activations"                    0        300.65
    {'maxpool_3'               }     {'maxpool_3'  }           "Activations"                    0        299.73
    {'conv_4'                  }     {'conv_4'     }           "Activations"              -245.37        209.11
    {'relu_4'                  }     {'relu_4'     }           "Activations"                    0        209.11
    {'maxpool_4'               }     {'maxpool_4'  }           "Activations"                    0        209.11
    {'fc_1'                    }     {'fc_1'       }           "Activations"              -123.79        77.114
    {'relu_5'                  }     {'relu_5'     }           "Activations"                    0        77.114
    {'fc_2'                    }     {'fc_2'       }           "Activations"              -16.557        17.512
    {'relu_6'                  }     {'relu_6'     }           "Activations"                    0        17.512
    {'fc_3'                    }     {'fc_3'       }           "Activations"              -13.049        37.204
    {'softmax'                 }     {'softmax'    }           "Activations"           1.4971e-22             1
    {'classoutput'             }     {'classoutput'}           "Activations"           1.4971e-22             1

Установите целевую метрическую функцию и создайте dlquantizationOptions объект с целевой функцией метрики и набором данных валидации. В этом примере целевая метрическая функция вычисляет точность Top-5.

options = dlquantizationOptions('MetricFcn', {@(x)hComputeAccuracy(x,snet,validationData_reduced)});

Примечание

Если пользовательская метрическая функция не задана, для валидации будет использоваться метрическая функция по умолчанию. Метрическая функция по умолчанию использует не более 5 файлов из datastore валидации, когда MATLAB® выбирается среда симуляции. Пользовательские метрические функции не имеют этого ограничения.

Используйте validate функция для квантования настраиваемых параметров в слоях свертки сети. validate Функция моделирует квантованную сеть в MATLAB. validate функция использует метрическую функцию, заданную в dlquantizationOptions объект для сравнения результатов сетевого объекта с одним типом данных с результатами квантованного сетевого объекта.

prediction = dlQuantObj.validate(validationData_reduced,options)
### Notice: (Layer  1) The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: (Layer  2) The layer 'out_imageinput' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
Compiling leg: conv_1>>maxpool_4 ...
### Notice: (Layer  1) The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: (Layer 14) The layer 'output' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
Compiling leg: conv_1>>maxpool_4 ... complete.
Compiling leg: fc_1>>fc_3 ...
### Notice: (Layer  1) The layer 'maxpool_4' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: (Layer  7) The layer 'output' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
Compiling leg: fc_1>>fc_3 ... complete.
### Should not enter here. It means a component is unaccounted for in MATLAB Emulation.
### Notice: (Layer  1) The layer 'fc_3' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: (Layer  2) The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: (Layer  3) The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.

prediction = 

  struct with fields:

       NumSamples: 5
    MetricResults: [1×1 struct]

Исследуйте MetricResults.Result поле выхода валидации для просмотра эффективности квантованной сети.

validateOut = prediction.MetricResults.Result
validateOut =

  2×2 table

    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}           1      
     {'Quantized'     }           1      

Входные параметры

свернуть все

dlquantizer объект, задающий сеть для квантования.

Данные для валидации квантованной сети, заданные как imageDataStore объект, augmentedImageDataStore объект, или pixelLabelImageDataStore объект.

Опции квантования сети, заданные как dlquantizationOptions объект.

Выходные аргументы

свернуть все

Результаты квантования сети, возвращенные как struct. Эти поля содержатся в struct.

  • NumSamples - Количество выборочных входов, используемых для проверки сети.

  • MetricResults - Struct, содержащая результаты метрической функции, заданные в dlquantizationOptions объект. Когда в dlquantizationOptions задано более одной метрической функции объект, MetricResults - массив структур.

    MetricResults содержит эти поля.

ОбластьОписание
MetricFunctionФункция, используемая для определения эффективности квантованной сети. Эта функция задана в dlquantizationOptions объект.
Result

Таблица, указывающая результаты метрической функции до и после квантования.

Первая строка таблицы содержит информацию для исходной реализации с плавающей точкой. Вторая строка содержит информацию для квантованной реализации. Выход метрической функции отображается в MetricOutput столбец.

Введенный в R2020a
Для просмотра документации необходимо авторизоваться на сайте