Этот пример показов, как измерить индикатор качества канала (CQI) блока частоту ошибок (BLER), которая указывает вероятность неправильного декодирования информации CQI, отправленной с использованием физического канала управления восходящей линии связи (PUCCH) формата 2. Требования к эффективности CQI BLER определены в TS 36.104 раздел 8.3.3.1.
Этот пример использует длину симуляции 10 подкадров. Это значение было выбрано для ускорения симуляции. Чтобы получить более точные результаты, следует выбрать большее значение. CQI BLER вычисляется для нескольких точек ОСШ. Цель, заданная в TS 36.104 Раздел 8.3.3.1 [1] для полосы пропускания 1,4 МГц (6 RB) и одной передающей антенны, является CQI BLER 1% (то есть вероятность ошибочного обнаружения блоков P = 0,01) при ОСШ -3,9 дБ. Тест задан для 1 передающей антенны.
numSubframes = 10; % Number of subframes SNRdB = [-9.9 -7.9 -5.9 -3.9 -1.9]; % SNR range NTxAnts = 1; % Number of transmit antennas
ue = struct; % UE config structure ue.NULRB = 6; % 6 resource blocks ue.CyclicPrefixUL = 'Normal'; % Normal cyclic prefix ue.Hopping = 'Off'; % No frequency hopping ue.NCellID = 9; ue.RNTI = 1; % Radio network temporary id ue.NTxAnts = NTxAnts;
% Empty hybrid ACK vector is used for Physical Uplink Control Channel % (PUCCH) 2 ACK = []; pucch = struct; % PUCCH config structure % Vector of PUCCH resource indices, one per transmission antenna. This is % the n2pucch parameter pucch.ResourceIdx = 0:ue.NTxAnts-1; % Set the size of resources allocated to PUCCH format 2 pucch.ResourceSize = 0; % Number of cyclic shifts used for PUCCH format 1 in resource blocks with a % mixture of formats 1 and 2. This is the N1cs parameter pucch.CyclicShifts = 0;
Сконфигурируйте модель канала с параметрами, указанными в тестах, описанных в TS 36.104 Раздел 8.3.3.1 [1].
channel = struct; % Channel config structure channel.NRxAnts = 2; % Number of receive antennas channel.DelayProfile = 'ETU'; % Channel delay profile channel.DopplerFreq = 70.0; % Doppler frequency in Hz channel.MIMOCorrelation = 'Low'; % Low MIMO correlation channel.NTerms = 16; % Oscillators used in fading model channel.ModelType = 'GMEDS'; % Rayleigh fading model type channel.Seed = 3; % Channel seed channel.InitPhase = 'Random'; % Random initial phases channel.NormalizePathGains = 'On'; % Normalize delay profile power channel.NormalizeTxAnts = 'On'; % Normalize for transmit antennas % SC-FDMA modulation information: required to get the sampling rate info = lteSCFDMAInfo(ue); channel.SamplingRate = info.SamplingRate; % Channel sampling rate
Устройство оценки канала сконфигурировано с использованием структуры cec
. Здесь кубическая интерполяция будет использоваться с окном усреднения ресурсных элементов (RE) 12 на 1. Это конфигурирует устройство оценки канала, чтобы использовать специальный режим, который обеспечивает способность сжимать и ортогонализировать различные перекрывающиеся PUCCH передачи.
cec = struct; % Channel estimation config structure cec.PilotAverage = 'UserDefined'; % Type of pilot averaging cec.FreqWindow = 12; % Frequency averaging window in REs (special mode) cec.TimeWindow = 1; % Time averaging window in REs (Special mode) cec.InterpType = 'cubic'; % Cubic interpolation
Для каждой точки ОСШ цикл ниже вычисляет CQI BLER с помощью информации, полученной из NSubframes
последовательные субкадры. Для каждого подкадра и значений ОСШ выполняются следующие операции:
Создайте пустую ресурсную сетку
Сгенерируйте и сопоставьте PUCCH 2 и его опорный сигнал демодуляции (DRS) с ресурсной сеткой
SC-FDMA модуляция
Передайте модулированный сигнал через канал
Синхронизация приемника
Демодуляция SC-FDMA
Оценка канала
Минимальная средняя квадратичная невязка (MMSE) эквализация
PUCCH 2 демодуляция/декодирование
Запись отказов декодирования
Декодирование DRS PUCCH 2. Это не требуется в рамках этого теста, но включено, чтобы проиллюстрировать предпринятые шаги
% Preallocate memory for vector of BLERs versus SNR BLER = zeros(size(SNRdB)); for nSNR = 1:length(SNRdB) % Detection failures counter failCount = 0; % Noise configuration SNR = 10^(SNRdB(nSNR)/20); % Convert dB to linear % The noise added before SC-FDMA demodulation will be amplified by the % IFFT. The amplification is the square root of the size of the IFFT. % To achieve the desired SNR after demodulation the noise power is % normalized by this value. In addition, because real and imaginary % parts of the noise are created separately before being combined into % complex additive white Gaussian noise, the noise amplitude must be % scaled by 1/sqrt(2*ue.NTxAnts) so the generated noise power is 1. N = 1/(SNR*sqrt(double(info.Nfft)))/sqrt(2.0*ue.NTxAnts); % Set the type of random number generator and its seed to the default % value rng('default'); % Loop for subframes offsetused = 0; for nsf = 1:numSubframes % Create resource grid ue.NSubframe = mod(nsf-1, 10); % Subframe number reGrid = lteULResourceGrid(ue); % Resource grid % Create PUCCH 2 and its DRS CQI = randi([0 1], 4, 1); % Generate 4 CQI bits to send % Encode CQI bits to produce 20 bits coded = lteUCIEncode(CQI); pucch2Sym = ltePUCCH2(ue, pucch, coded); % PUCCH 2 modulation pucch2DRSSym = ltePUCCH2DRS(ue, pucch, ACK); % PUCCH 2 DRS creation % Generate indices for PUCCH 2 and its DRS pucch2Indices = ltePUCCH2Indices(ue, pucch); pucch2DRSIndices = ltePUCCH2DRSIndices(ue, pucch); % Map PUCCH 2 and its DRS to the resource grid reGrid(pucch2Indices) = pucch2Sym; reGrid(pucch2DRSIndices) = pucch2DRSSym; % SC-FDMA modulation txwave = lteSCFDMAModulate(ue, reGrid); % Channel state information: set the init time to the correct value % to guarantee continuity of the fading waveform channel.InitTime = (nsf-1)/1000; % Channel modeling % The additional 25 samples added to the end of the waveform are to % cover the range of delays expected from the channel modeling (a % combination of implementation delay and channel delay spread) rxwave = lteFadingChannel(channel, [txwave;zeros(25, ue.NTxAnts)]); % Add noise at receiver noise = N*complex(randn(size(rxwave)), randn(size(rxwave))); rxwave = rxwave + noise; % Receiver % Synchronization % An offset within the range of delays expected from the channel % modeling (a combination of implementation delay and channel % delay spread) indicates success [offset, rxACK] = lteULFrameOffsetPUCCH2( ... ue, pucch, rxwave, length(ACK)); if (offset<25) offsetused = offset; end % SC-FDMA demodulation rxgrid = lteSCFDMADemodulate(ue, rxwave(1+offsetused:end, :)); % Channel estimation [H, n0] = lteULChannelEstimatePUCCH2(ue, pucch, cec, rxgrid, rxACK); % Extract REs corresponding to the PUCCH 2 from the given subframe % across all receive antennas and channel estimates [pucch2Rx, pucch2H] = lteExtractResources(pucch2Indices, rxgrid, H); % MMSE Equalization eqgrid = lteULResourceGrid(ue); eqgrid(pucch2Indices) = lteEqualizeMMSE(pucch2Rx, pucch2H, n0); % PUCCH 2 demodulation rxBits = ltePUCCH2Decode(ue, pucch, eqgrid(pucch2Indices)); % PUCCH 2 decoding decoded = lteUCIDecode(rxBits, length(CQI)); % Record any decoding failures if (sum(decoded~=CQI)~=0) failCount = failCount + 1; end % Perform PUCCH 2 DRS decoding. This is not required as part of % this test, but illustrates the steps involved. % Extract REs corresponding to the PUCCH 2 DRS from the given % subframe across all receive antennas and channel estimates [drsRx, drsH] = lteExtractResources(pucch2DRSIndices, rxgrid, H); % PUCCH 2 DRS Equalization eqgrid(pucch2DRSIndices) = lteEqualizeMMSE(drsRx, drsH, n0); % PUCCH 2 DRS decoding rxACK = ltePUCCH2DRSDecode( ... ue, pucch, length(ACK), eqgrid(pucch2DRSIndices)); end % Probability of erroneous block detection BLER(nSNR) = (failCount/numSubframes); end
plot(SNRdB, BLER, 'b-o', 'LineWidth', 2, 'MarkerSize', 7); hold on; plot(-3.9, 0.01, 'rx', 'LineWidth', 2, 'MarkerSize', 7); xlabel('SNR (dB)'); ylabel('CQI BLER'); title('CQI BLER test (TS 36.104 Section 8.3.3.1)'); axis([SNRdB(1)-0.1 SNRdB(end)+0.1 -0.05 0.4]); legend('simulated performance', 'target');
3GPP TS 36.104 «Радиопередача и прием базовой станции (BS)»