Настройте параметр регуляризации, чтобы обнаружить функции, используя NCA для классификации

В этом примере показано, как настроить параметр регуляризации в fscnca использование перекрестной валидации. Настройка параметра регуляризации помогает правильно обнаружить соответствующие функции в данных.

Загрузите выборочные данные.

load('twodimclassdata.mat')

Этот набор данных моделируется с помощью схемы, описанной в [1]. Это двухклассовая задача классификации в двух размерностях. Данные из первого класса взяты из двух двухмерных нормальных распределений N(μ1,Σ) или N(μ2,Σ) с равной вероятностью, где μ1=[-0.75,-1.5], μ2=[0.75,1.5] и Σ=I2. Точно так же данные из второго класса берутся из двух двухмерных нормальных распределений N(μ3,Σ) или N(μ4,Σ) с равной вероятностью, где μ3=[1.5,-1.5], μ4=[-1.5,1.5] и Σ=I2. Нормальные параметры распределения, используемые для создания этого набора данных, приводят к более плотным кластерам в данных, чем данные, используемые в [1].

Создайте график поля точек данных, сгруппированных по классам.

figure
gscatter(X(:,1),X(:,2),y)
xlabel('x1')
ylabel('x2')

Figure contains an axes. The axes contains 2 objects of type line. These objects represent -1, 1.

Добавить 100 нерелевантных функций к X. Сначала сгенерируйте данные из Нормального распределения со средним значением 0 и отклонением 20.

n = size(X,1);
rng('default')
XwithBadFeatures = [X,randn(n,100)*sqrt(20)];

Нормализуйте данные так, чтобы все точки находились между 0 и 1.

XwithBadFeatures = (XwithBadFeatures-min(XwithBadFeatures,[],1))./range(XwithBadFeatures,1);
X = XwithBadFeatures;

Подбор модели nca к данным с помощью Lambda по умолчанию (параметр регуляризации, λ) значение. Используйте решатель LBFGS и отобразите информацию о сходимости.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...
    'Solver','lbfgs');
 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  9.519258e-03 |   1.494e-02 |   0.000e+00 |        |   4.015e+01 |   0.000e+00 |   YES  |
|        1 | -3.093574e-01 |   7.186e-03 |   4.018e+00 |    OK  |   8.956e+01 |   1.000e+00 |   YES  |
|        2 | -4.809455e-01 |   4.444e-03 |   7.123e+00 |    OK  |   9.943e+01 |   1.000e+00 |   YES  |
|        3 | -4.938877e-01 |   3.544e-03 |   1.464e+00 |    OK  |   9.366e+01 |   1.000e+00 |   YES  |
|        4 | -4.964759e-01 |   2.901e-03 |   6.084e-01 |    OK  |   1.554e+02 |   1.000e+00 |   YES  |
|        5 | -4.972077e-01 |   1.323e-03 |   6.129e-01 |    OK  |   1.195e+02 |   5.000e-01 |   YES  |
|        6 | -4.974743e-01 |   1.569e-04 |   2.155e-01 |    OK  |   1.003e+02 |   1.000e+00 |   YES  |
|        7 | -4.974868e-01 |   3.844e-05 |   4.161e-02 |    OK  |   9.835e+01 |   1.000e+00 |   YES  |
|        8 | -4.974874e-01 |   1.417e-05 |   1.073e-02 |    OK  |   1.043e+02 |   1.000e+00 |   YES  |
|        9 | -4.974874e-01 |   4.893e-06 |   1.781e-03 |    OK  |   1.530e+02 |   1.000e+00 |   YES  |
|       10 | -4.974874e-01 |   9.404e-08 |   8.947e-04 |    OK  |   1.670e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 9.404e-08
              Two norm of the final step     = 8.947e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 9.404e-08, TolFun = 1.000e-06
EXIT: Local minimum found.

Постройте график весов функций. Веса нерелевантных функций должны быть очень близки к нулю.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')   
grid on

Figure contains an axes. The axes contains an object of type line.

Все веса очень близки к нулю. Это указывает, что значение λ используется при обучении модель слишком велика. Когда λ, все веса функций приближаются к нулю. Следовательно, важно настроить параметр регуляризации в большинстве случаев, чтобы обнаружить соответствующие функции.

Используйте пятикратную перекрестную валидацию для настройки λ для выбора признаков с помощью fscnca. Настройка λ означает нахождение λ значение, которое приведет к минимальным классификационным потерям. Вот шаги настройки λ использование перекрестной валидации:

1. Сначала разбейте данные на пять складок. Для каждой складки cvpartition Присвоения 4/5-ю часть данных как набор обучающих данных и 1/5-ю часть данных как тестовый набор.

cvp           = cvpartition(y,'kfold',5);
numtestsets   = cvp.NumTestSets;
lambdavalues  = linspace(0,2,20)/length(y); 
lossvalues    = zeros(length(lambdavalues),numtestsets);

2. Обучите модель анализа компонентов по соседству (nca) для каждой λ значение с использованием набора обучающих данных в каждой складке.

3. Вычислите классификационные потери для соответствующего тестового набора в складке с помощью модели nca. Запишите значение потерь.

4. Повторите это для всех складок и всех λ значения.

for i = 1:length(lambdavalues)                
    for k = 1:numtestsets
        
        % Extract the training set from the partition object
        Xtrain = X(cvp.training(k),:);
        ytrain = y(cvp.training(k),:);
        
        % Extract the test set from the partition object
        Xtest = X(cvp.test(k),:);
        ytest = y(cvp.test(k),:);
        
        % Train an nca model for classification using the training set
        ncaMdl = fscnca(Xtrain,ytrain,'FitMethod','exact', ...
            'Solver','lbfgs','Lambda',lambdavalues(i));
        
        % Compute the classification loss for the test set using the nca
        % model
        lossvalues(i,k) = loss(ncaMdl,Xtest,ytest, ...
            'LossFunction','quadratic');   
   
    end                          
end

Постройте график средних значений потерь складок от λ значения.

figure
plot(lambdavalues,mean(lossvalues,2),'ro-')
xlabel('Lambda values')
ylabel('Loss values')
grid on

Figure contains an axes. The axes contains an object of type line.

Найти λ значение, соответствующее минимальной средней потере.

[~,idx] = min(mean(lossvalues,2)); % Find the index
bestlambda = lambdavalues(idx) % Find the best lambda value
bestlambda = 0.0037

Подгонка модели nca ко всем данным с помощью лучших λ значение. Используйте решатель LBFGS и отобразите информацию о сходимости.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...
     'Solver','lbfgs','Lambda',bestlambda);
 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 | -1.246913e-01 |   1.231e-02 |   0.000e+00 |        |   4.873e+01 |   0.000e+00 |   YES  |
|        1 | -3.411330e-01 |   5.717e-03 |   3.618e+00 |    OK  |   1.068e+02 |   1.000e+00 |   YES  |
|        2 | -5.226111e-01 |   3.763e-02 |   8.252e+00 |    OK  |   7.825e+01 |   1.000e+00 |   YES  |
|        3 | -5.817731e-01 |   8.496e-03 |   2.340e+00 |    OK  |   5.591e+01 |   5.000e-01 |   YES  |
|        4 | -6.132632e-01 |   6.863e-03 |   2.526e+00 |    OK  |   8.228e+01 |   1.000e+00 |   YES  |
|        5 | -6.135264e-01 |   9.373e-03 |   7.341e-01 |    OK  |   3.244e+01 |   1.000e+00 |   YES  |
|        6 | -6.147894e-01 |   1.182e-03 |   2.933e-01 |    OK  |   2.447e+01 |   1.000e+00 |   YES  |
|        7 | -6.148714e-01 |   6.392e-04 |   6.688e-02 |    OK  |   3.195e+01 |   1.000e+00 |   YES  |
|        8 | -6.149524e-01 |   6.521e-04 |   9.934e-02 |    OK  |   1.236e+02 |   1.000e+00 |   YES  |
|        9 | -6.149972e-01 |   1.154e-04 |   1.191e-01 |    OK  |   1.171e+02 |   1.000e+00 |   YES  |
|       10 | -6.149990e-01 |   2.922e-05 |   1.983e-02 |    OK  |   7.365e+01 |   1.000e+00 |   YES  |
|       11 | -6.149993e-01 |   1.556e-05 |   8.354e-03 |    OK  |   1.288e+02 |   1.000e+00 |   YES  |
|       12 | -6.149994e-01 |   1.147e-05 |   7.256e-03 |    OK  |   2.332e+02 |   1.000e+00 |   YES  |
|       13 | -6.149995e-01 |   1.040e-05 |   6.781e-03 |    OK  |   2.287e+02 |   1.000e+00 |   YES  |
|       14 | -6.149996e-01 |   9.015e-06 |   6.265e-03 |    OK  |   9.974e+01 |   1.000e+00 |   YES  |
|       15 | -6.149996e-01 |   7.763e-06 |   5.206e-03 |    OK  |   2.919e+02 |   1.000e+00 |   YES  |
|       16 | -6.149997e-01 |   8.374e-06 |   1.679e-02 |    OK  |   6.878e+02 |   1.000e+00 |   YES  |
|       17 | -6.149997e-01 |   9.387e-06 |   9.542e-03 |    OK  |   1.284e+02 |   5.000e-01 |   YES  |
|       18 | -6.149997e-01 |   3.250e-06 |   5.114e-03 |    OK  |   1.225e+02 |   1.000e+00 |   YES  |
|       19 | -6.149997e-01 |   1.574e-06 |   1.275e-03 |    OK  |   1.808e+02 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       20 | -6.149997e-01 |   5.764e-07 |   6.765e-04 |    OK  |   2.905e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 5.764e-07
              Two norm of the final step     = 6.765e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 5.764e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Постройте график весов функций.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')    
grid on

Figure contains an axes. The axes contains an object of type line.

fscnca правильно выясняется, что первые две функции являются релевантными, а остальные не являются. Обратите внимание, что первые две функции не являются индивидуально информативными, но в совокупности приводят к точной классификационной модели.

Ссылки

1. Ян, В., К. Ван, В. Цзо. «Компонент соседства Выбора признаков для высоко-размерных Данных». Журнал компьютеров. Том 7, № 1, январь 2012 года.

См. также

| | | |

Похожие темы

Для просмотра документации необходимо авторизоваться на сайте