Этот пример показывает полный рабочий процесс редукции данных из данных изображения.
Этот пример использует данные изображения MNIST [1], который состоит из изображений рукописных цифр. Изображения составляют 28 на 28 пикселей в серой шкале. Каждое изображение имеет связанную метку от 0 до 9, которая является цифрой, которую представляет изображение.
Начните с получения изображений и данных о метках
http://yann.lecun.com/exdb/mnist/
Разархивируйте файлы. Для лучшей эффективности в этом длинном примере используйте тестовые данные как обучающие данные, а обучающие данные как тестовые данные.
imageFileName = 't10k-images.idx3-ubyte'; labelFileName = 't10k-labels.idx1-ubyte';
Обработайте файлы, чтобы загрузить их в рабочую область. Код для этой функции обработки появляется в конце этого примера.
[Xtrain,LabelTrain] = processMNISTdata(imageFileName,labelFileName);
Read MNIST image data... Number of images in the dataset: 10000 ... Each image is of 28 by 28 pixels... The image data is read to a matrix of dimensions: 10000 by 784... End of reading image data. Read MNIST label data... Number of labels in the dataset: 10000 ... The label data is read to a matrix of dimensions: 10000 by 1... End of reading label data.
Просмотрите несколько изображений.
rng('default') % For reproducibility numrows = size(Xtrain,1); ims = randi(numrows,4,1); imgs = Xtrain(ims,:); for i = 1:4 pp{i} = reshape(imgs(i,:),28,28); end ppf = [pp{1},pp{2};pp{3},pp{4}]; imshow(ppf);
Существуют несколько факторов при выборе количества функций для извлечения:
Больше функций используют больше памяти и вычислительное время.
Меньшее количество функций может привести к плохому классификатору.
В данном примере выберите 100 функций.
q = 100;
Существует две функции редукции данных, sparsefilt
и rica
. Начнем с sparsefilt
функция. Установите количество итераций равным 10, чтобы экстракция не занимала слишком много времени.
Как правило, вы получаете хорошие результаты, запуская sparsefilt
алгоритм для нескольких итераций до нескольких сотен итераций. Выполнение алгоритма для слишком многих итераций может привести к снижению точности классификации, типу избыточной задачи.
Использование sparsefilt
чтобы получить разреженную модель фильтрации при использовании 10 итераций.
Mdl = sparsefilt(Xtrain,q,'IterationLimit',10);
Warning: Solver LBFGS was not able to converge to a solution.
sparsefilt
предупреждает, что внутренний оптимизатор LBFGS не сходился. Оптимизатор не сходился, потому что вы установили предел итерации 10. Тем не менее, можно использовать результат для обучения классификатора.
Преобразуйте исходные данные в представление новой возможности.
NewX = transform(Mdl,Xtrain);
Обучите линейный классификатор на основе преобразованных данных и правильных меток классификации в LabelTrain
. Точность выученной модели чувствительна к fitcecoc
параметр регуляризации Lambda
. Попытайтесь найти лучшее значение для Lambda
при помощи OptimizeHyperparameters
Пара "имя-значение". Имейте в виду, что эта оптимизация требует времени. Если у вас есть лицензия Parallel Computing Toolbox™, используйте параллельные вычисления для более быстрого выполнения. Если у вас нет параллельной лицензии, удалите UseParallel
вызовы перед запуском этого скрипта.
t = templateLinear('Solver','lbfgs'); options = struct('UseParallel',true); Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ... 'OptimizeHyperparameters',{'Lambda'}, ... 'HyperparameterOptimizationOptions',options);
Copying objective function to workers... Done copying objective function to workers. |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 1 | 6 | Best | 0.5777 | 8.5334 | 0.5777 | 0.5777 | 0.20606 | | 2 | 5 | Accept | 0.8865 | 8.9062 | 0.2041 | 0.27206 | 8.8234 | | 3 | 5 | Best | 0.2041 | 9.7024 | 0.2041 | 0.27206 | 0.026804 | | 4 | 6 | Best | 0.1077 | 14.629 | 0.1077 | 0.10773 | 1.7309e-09 | | 5 | 6 | Best | 0.0962 | 15.767 | 0.0962 | 0.096203 | 0.0002442 | | 6 | 6 | Accept | 0.1999 | 6.4363 | 0.0962 | 0.09622 | 0.024862 | | 7 | 6 | Accept | 0.2074 | 6.4171 | 0.0962 | 0.096222 | 0.029034 | | 8 | 6 | Accept | 0.1065 | 12.974 | 0.0962 | 0.096222 | 2.037e-08 | | 9 | 6 | Accept | 0.0977 | 22.976 | 0.0962 | 0.096216 | 8.0495e-06 | | 10 | 6 | Accept | 0.1237 | 8.5033 | 0.0962 | 0.096199 | 0.0029745 | | 11 | 6 | Accept | 0.1076 | 10.653 | 0.0962 | 0.096208 | 0.00080903 | | 12 | 6 | Accept | 0.1034 | 16.761 | 0.0962 | 0.0962 | 3.2145e-07 | | 13 | 6 | Best | 0.0933 | 16.715 | 0.0933 | 0.093293 | 6.3327e-05 | | 14 | 6 | Accept | 0.109 | 12.946 | 0.0933 | 0.09328 | 5.7887e-09 | | 15 | 6 | Accept | 0.0994 | 18.805 | 0.0933 | 0.093312 | 1.8981e-06 | | 16 | 6 | Accept | 0.106 | 15.088 | 0.0933 | 0.093306 | 7.4684e-08 | | 17 | 6 | Accept | 0.0952 | 20.372 | 0.0933 | 0.093285 | 2.2831e-05 | | 18 | 6 | Accept | 0.0933 | 14.528 | 0.0933 | 0.093459 | 0.00013097 | | 19 | 6 | Accept | 0.1082 | 12.764 | 0.0933 | 0.093458 | 1.0001e-09 | | 20 | 6 | Best | 0.0915 | 16.157 | 0.0915 | 0.092391 | 8.3234e-05 | |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 21 | 6 | Accept | 0.8865 | 6.6373 | 0.0915 | 0.092387 | 1.6749 | | 22 | 6 | Accept | 0.0929 | 17.306 | 0.0915 | 0.092457 | 0.00010668 | | 23 | 6 | Accept | 0.0937 | 19.046 | 0.0915 | 0.092535 | 5.0962e-05 | | 24 | 6 | Accept | 0.0916 | 17.932 | 0.0915 | 0.092306 | 9.023e-05 | | 25 | 6 | Accept | 0.0935 | 17.53 | 0.0915 | 0.092431 | 0.00011726 | | 26 | 6 | Accept | 0.1474 | 8.3795 | 0.0915 | 0.092397 | 0.006997 | | 27 | 6 | Accept | 0.0939 | 19.188 | 0.0915 | 0.092427 | 5.2557e-05 | | 28 | 6 | Accept | 0.1147 | 10.686 | 0.0915 | 0.092432 | 0.0015036 | | 29 | 6 | Accept | 0.1049 | 16.609 | 0.0915 | 0.092434 | 1.4871e-07 | | 30 | 6 | Accept | 0.1069 | 13.929 | 0.0915 | 0.092435 | 1.0899e-08 | __________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 83.1976 seconds. Total objective function evaluation time: 416.8767 Best observed feasible point: Lambda __________ 8.3234e-05 Observed objective function value = 0.0915 Estimated objective function value = 0.09245 Function evaluation time = 16.1569 Best estimated feasible point (according to models): Lambda _________ 9.023e-05 Estimated objective function value = 0.092435 Estimated function evaluation time = 17.0972
Проверьте ошибку классификатора при применении к тестовым данным. Во-первых, загрузите тестовые данные.
imageFileName = 'train-images.idx3-ubyte'; labelFileName = 'train-labels.idx1-ubyte'; [Xtest,LabelTest] = processMNISTdata(imageFileName,labelFileName);
Read MNIST image data... Number of images in the dataset: 60000 ... Each image is of 28 by 28 pixels... The image data is read to a matrix of dimensions: 60000 by 784... End of reading image data. Read MNIST label data... Number of labels in the dataset: 60000 ... The label data is read to a matrix of dimensions: 60000 by 1... End of reading label data.
Вычислите классификационные потери при применении классификатора к тестовым данным.
TestX = transform(Mdl,Xtest); Loss = loss(Cmdl,TestX,LabelTest)
Loss = 0.1009
Это преобразование привело к лучшему классификатору, чем классификатор, обученный на исходных данных? Создайте классификатор на основе исходных обучающих данных и оцените его потерю.
Omdl = fitcecoc(Xtrain,LabelTrain,'Learners',t, ... 'OptimizeHyperparameters',{'Lambda'}, ... 'HyperparameterOptimizationOptions',options); Losso = loss(Omdl,Xtest,LabelTest)
Copying objective function to workers... Done copying objective function to workers. |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 1 | 5 | Best | 0.0779 | 46.965 | 0.0779 | 0.0779 | 5.7933e-08 | | 2 | 5 | Accept | 0.0779 | 47.003 | 0.0779 | 0.0779 | 3.8643e-09 | | 3 | 5 | Accept | 0.0779 | 47.068 | 0.0779 | 0.0779 | 1.3269e-06 | | 4 | 6 | Accept | 0.078 | 60.714 | 0.0779 | 0.077925 | 3.0332e-05 | | 5 | 6 | Accept | 0.0787 | 133.21 | 0.0779 | 0.0779 | 0.011605 | | 6 | 6 | Best | 0.0775 | 135.97 | 0.0775 | 0.077983 | 0.00020291 | | 7 | 6 | Accept | 0.0779 | 44.642 | 0.0775 | 0.077971 | 5.735e-08 | | 8 | 6 | Accept | 0.0785 | 123.19 | 0.0775 | 0.0775 | 0.024589 | | 9 | 6 | Accept | 0.0779 | 43.574 | 0.0775 | 0.0775 | 1.0042e-09 | | 10 | 6 | Accept | 0.0779 | 43.038 | 0.0775 | 0.0775 | 4.7227e-06 | | 11 | 6 | Best | 0.0774 | 137.51 | 0.0774 | 0.077451 | 0.00021639 | | 12 | 6 | Accept | 0.0779 | 44.07 | 0.0774 | 0.077452 | 6.7132e-09 | | 13 | 6 | Accept | 0.0779 | 44.822 | 0.0774 | 0.077453 | 2.873e-07 | | 14 | 6 | Best | 0.0744 | 233.12 | 0.0744 | 0.074402 | 6.805 | | 15 | 6 | Accept | 0.0778 | 140.49 | 0.0744 | 0.074406 | 0.66889 | | 16 | 6 | Accept | 0.0774 | 149.32 | 0.0744 | 0.074405 | 0.0002769 | | 17 | 6 | Accept | 0.0774 | 155 | 0.0744 | 0.074404 | 0.00046083 | | 18 | 6 | Accept | 0.0765 | 152.63 | 0.0744 | 0.074687 | 0.00027101 | | 19 | 6 | Accept | 0.0768 | 156.32 | 0.0744 | 0.077558 | 0.00026573 | | 20 | 6 | Best | 0.0725 | 255.51 | 0.0725 | 0.073249 | 9.9961 | |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 21 | 6 | Best | 0.0723 | 221.5 | 0.0723 | 0.073161 | 4.212 | | 22 | 6 | Accept | 0.0732 | 259.51 | 0.0723 | 0.073166 | 9.9916 | | 23 | 6 | Best | 0.072 | 261.94 | 0.072 | 0.072848 | 9.9883 | | 24 | 6 | Accept | 0.0778 | 122.56 | 0.072 | 0.072854 | 0.13413 | | 25 | 6 | Accept | 0.0733 | 258.54 | 0.072 | 0.072946 | 9.9904 | | 26 | 6 | Accept | 0.0746 | 244.53 | 0.072 | 0.073144 | 7.0911 | | 27 | 6 | Accept | 0.0779 | 44.573 | 0.072 | 0.073134 | 2.1183e-08 | | 28 | 6 | Accept | 0.078 | 45.478 | 0.072 | 0.073126 | 1.1663e-05 | | 29 | 6 | Accept | 0.0779 | 43.954 | 0.072 | 0.073118 | 1.336e-07 | | 30 | 6 | Accept | 0.0779 | 44.574 | 0.072 | 0.073112 | 1.7282e-09 | __________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 690.8688 seconds. Total objective function evaluation time: 3741.3176 Best observed feasible point: Lambda ______ 9.9883 Observed objective function value = 0.072 Estimated objective function value = 0.073112 Function evaluation time = 261.9357 Best estimated feasible point (according to models): Lambda ______ 9.9961 Estimated objective function value = 0.073112 Estimated function evaluation time = 257.9556 Losso = 0.0865
Классификатор, основанный на разреженной фильтрации, имеет несколько более высокие потери, чем классификатор, основанный на исходных данных. Однако классификатор использует только 100 признаков, а не 784 функции в исходных данных, и его гораздо быстрее создать. Попытайтесь сделать лучший классификатор разреженной фильтрации путем увеличения q
от 100 до 200, что все еще намного меньше 784.
q = 200; Mdl2 = sparsefilt(Xtrain,q,'IterationLimit',10); NewX = transform(Mdl2,Xtrain); TestX = transform(Mdl2,Xtest); Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ... 'OptimizeHyperparameters',{'Lambda'}, ... 'HyperparameterOptimizationOptions',options); Loss2 = loss(Cmdl,TestX,LabelTest)
Warning: Solver LBFGS was not able to converge to a solution. Copying objective function to workers... Done copying objective function to workers. |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 1 | 5 | Best | 0.8865 | 7.3578 | 0.8865 | 0.8865 | 1.93 | | 2 | 5 | Accept | 0.8865 | 7.3408 | 0.8865 | 0.8865 | 2.5549 | | 3 | 6 | Best | 0.0693 | 9.0077 | 0.0693 | 0.069376 | 9.9515e-09 | | 4 | 5 | Accept | 0.0705 | 9.1067 | 0.0693 | 0.069374 | 1.2123e-08 | | 5 | 5 | Accept | 0.1489 | 9.5685 | 0.0693 | 0.069374 | 0.015542 | | 6 | 6 | Accept | 0.8865 | 7.5032 | 0.0693 | 0.06943 | 4.7067 | | 7 | 6 | Accept | 0.071 | 8.8044 | 0.0693 | 0.069591 | 5.0861e-09 | | 8 | 6 | Accept | 0.0715 | 8.9517 | 0.0693 | 0.070048 | 1.001e-09 | | 9 | 6 | Accept | 0.0833 | 14.393 | 0.0693 | 0.069861 | 0.0014191 | | 10 | 6 | Best | 0.0594 | 25.565 | 0.0594 | 0.059458 | 6.767e-05 | | 11 | 6 | Accept | 0.0651 | 20.074 | 0.0594 | 0.059463 | 8.078e-07 | | 12 | 6 | Accept | 0.0695 | 14.495 | 0.0594 | 0.059473 | 1.0381e-07 | | 13 | 6 | Accept | 0.1042 | 12.085 | 0.0594 | 0.059386 | 0.0039745 | | 14 | 6 | Accept | 0.065 | 20.235 | 0.0594 | 0.059416 | 0.00031759 | | 15 | 6 | Accept | 0.0705 | 10.929 | 0.0594 | 0.059416 | 3.6503e-08 | | 16 | 6 | Accept | 0.0637 | 30.593 | 0.0594 | 0.059449 | 8.8718e-06 | | 17 | 6 | Accept | 0.064 | 25.084 | 0.0594 | 0.059464 | 2.6286e-06 | | 18 | 6 | Accept | 0.0605 | 31.964 | 0.0594 | 0.059387 | 2.459e-05 | | 19 | 6 | Accept | 0.0606 | 23.149 | 0.0594 | 0.059312 | 0.0001464 | | 20 | 6 | Accept | 0.0602 | 32.178 | 0.0594 | 0.059874 | 4.1437e-05 | |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 21 | 6 | Accept | 0.0594 | 27.686 | 0.0594 | 0.059453 | 8.0717e-05 | | 22 | 6 | Accept | 0.0612 | 33.427 | 0.0594 | 0.059476 | 1.6878e-05 | | 23 | 6 | Accept | 0.0673 | 17.444 | 0.0594 | 0.059475 | 3.1788e-07 | | 24 | 6 | Best | 0.0593 | 26.262 | 0.0593 | 0.05944 | 7.8179e-05 | | 25 | 6 | Accept | 0.248 | 7.6345 | 0.0593 | 0.059409 | 0.095654 | | 26 | 6 | Accept | 0.0598 | 28.536 | 0.0593 | 0.059465 | 5.0819e-05 | | 27 | 6 | Accept | 0.0701 | 9.0545 | 0.0593 | 0.059466 | 1.8937e-09 | | 28 | 5 | Accept | 0.7081 | 7.1176 | 0.0593 | 0.059372 | 0.30394 | | 29 | 5 | Accept | 0.0676 | 11.782 | 0.0593 | 0.059372 | 6.1136e-08 | | 30 | 3 | Accept | 0.06 | 23.556 | 0.0593 | 0.059422 | 0.00010144 | | 31 | 3 | Accept | 0.0725 | 16.069 | 0.0593 | 0.059422 | 0.00069403 | | 32 | 3 | Accept | 0.1928 | 8.3732 | 0.0593 | 0.059422 | 0.040402 | __________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 32 Total elapsed time: 97.7946 seconds. Total objective function evaluation time: 545.3255 Best observed feasible point: Lambda __________ 7.8179e-05 Observed objective function value = 0.0593 Estimated objective function value = 0.059422 Function evaluation time = 26.2624 Best estimated feasible point (according to models): Lambda __________ 7.8179e-05 Estimated objective function value = 0.059422 Estimated function evaluation time = 26.508 Loss2 = 0.0682
На этот раз классификационные потери ниже, чем у исходного классификатора данных.
Попробуйте другую функцию редукции данных, rica
. Извлеките 200 функции, создайте классификатор и исследуйте его потери на тестовых данных. Используйте больше итераций для rica
функция, потому что rica
может работать лучше с большим количеством итераций, чем sparsefilt
использует.
Часто перед редукцией данных вы «предвыходите» входные данные как шаг предварительной обработки данных. Предварительный шаг включает два преобразования, декорреляцию и стандартизацию, которые делают предикторы имеют нулевое среднее и тождества ковариации. rica
поддерживает только преобразование стандартизации. Вы используете Standardize
аргумент пары "имя-значение", чтобы предикторы имели нулевое среднее и единичное отклонение. Также можно преобразовать изображения для контрастной нормализации индивидуально путем применения zscore
преобразование перед вызовом sparsefilt
или rica
.
Mdl3 = rica(Xtrain,q,'IterationLimit',400,'Standardize',true); NewX = transform(Mdl3,Xtrain); TestX = transform(Mdl3,Xtest); Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ... 'OptimizeHyperparameters',{'Lambda'}, ... 'HyperparameterOptimizationOptions',options); Loss3 = loss(Cmdl,TestX,LabelTest)
Warning: Solver LBFGS was not able to converge to a solution. Copying objective function to workers... Done copying objective function to workers. |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 1 | 6 | Best | 0.1179 | 12.012 | 0.1179 | 0.1179 | 8.4727 | | 2 | 6 | Best | 0.082 | 13.384 | 0.082 | 0.083897 | 4.3291e-09 | | 3 | 6 | Best | 0.0809 | 18.917 | 0.0809 | 0.080902 | 1.738e-05 | | 4 | 6 | Accept | 0.0821 | 19.172 | 0.0809 | 0.08091 | 3.8101e-06 | | 5 | 6 | Accept | 0.0921 | 14.445 | 0.0809 | 0.086349 | 2.3753 | | 6 | 6 | Accept | 0.0809 | 13.393 | 0.0809 | 0.083836 | 1.3757e-08 | | 7 | 6 | Best | 0.076 | 28.075 | 0.076 | 0.081808 | 0.00027773 | | 8 | 6 | Best | 0.0758 | 29.686 | 0.0758 | 0.078829 | 0.00068195 | | 9 | 6 | Accept | 0.0829 | 13.373 | 0.0758 | 0.078733 | 1.7543e-07 | | 10 | 6 | Accept | 0.0826 | 14.031 | 0.0758 | 0.078512 | 1.0045e-09 | | 11 | 6 | Accept | 0.0817 | 13.662 | 0.0758 | 0.078077 | 2.4568e-08 | | 12 | 6 | Accept | 0.0799 | 19.311 | 0.0758 | 0.077658 | 1.4061e-05 | | 13 | 6 | Best | 0.065 | 25.148 | 0.065 | 0.064974 | 0.060326 | | 14 | 6 | Accept | 0.0787 | 23.434 | 0.065 | 0.064947 | 0.00012407 | | 15 | 6 | Accept | 0.072 | 19.167 | 0.065 | 0.064997 | 0.43899 | | 16 | 6 | Accept | 0.073 | 28.39 | 0.065 | 0.065053 | 0.0023721 | | 17 | 6 | Accept | 0.0787 | 29.887 | 0.065 | 0.064928 | 0.00042914 | | 18 | 6 | Accept | 0.0662 | 26.374 | 0.065 | 0.064295 | 0.0077638 | | 19 | 6 | Accept | 0.0652 | 24.937 | 0.065 | 0.064502 | 0.087389 | | 20 | 6 | Accept | 0.0655 | 25.416 | 0.065 | 0.064762 | 0.072931 | |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 21 | 6 | Best | 0.0645 | 25.529 | 0.0645 | 0.064691 | 0.059245 | | 22 | 6 | Accept | 0.065 | 23.832 | 0.0645 | 0.06474 | 0.025521 | | 23 | 6 | Accept | 0.0819 | 20.343 | 0.0645 | 0.064732 | 7.2593e-07 | | 24 | 6 | Accept | 0.0664 | 23.732 | 0.0645 | 0.064718 | 0.1534 | | 25 | 6 | Accept | 0.0651 | 24.796 | 0.0645 | 0.064693 | 0.038371 | | 26 | 6 | Accept | 0.0651 | 25.449 | 0.0645 | 0.064613 | 0.014318 | | 27 | 6 | Accept | 0.0652 | 25.092 | 0.0645 | 0.064713 | 0.037107 | | 28 | 6 | Accept | 0.0645 | 24.404 | 0.0645 | 0.0647 | 0.042959 | | 29 | 6 | Accept | 0.0649 | 24.704 | 0.0645 | 0.064729 | 0.042776 | | 30 | 6 | Accept | 0.0652 | 24.341 | 0.0645 | 0.064786 | 0.035788 | __________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 124.9755 seconds. Total objective function evaluation time: 654.4364 Best observed feasible point: Lambda ________ 0.059245 Observed objective function value = 0.0645 Estimated objective function value = 0.064932 Function evaluation time = 25.5294 Best estimated feasible point (according to models): Lambda ________ 0.042776 Estimated objective function value = 0.064786 Estimated function evaluation time = 24.7849 Loss3 = 0.0749
The rica
классификатор на основе имеет несколько более высокие потери теста по сравнению с классификатором разреженной фильтрации.
Функции редукции данных имеют несколько параметров настройки. Одним из параметров, который может повлиять на результаты, является количество запрашиваемых функций. Посмотрите, как хорошо работают классификаторы, основанные на 1000 функциях, а не на 200 функциях, ранее опробованных, или 784 функциях в исходных данных. Использование большего количества функций, чем появляется в исходных данных, называется «избыточным» обучением. И наоборот, использование меньшего количества функций называется «недоработанным» обучением. Избыточное обучение может привести к повышению точности классификации, в то время как недостаточное обучение может сэкономить память и время.
q = 1000; Mdl4 = sparsefilt(Xtrain,q,'IterationLimit',10); NewX = transform(Mdl4,Xtrain); TestX = transform(Mdl4,Xtest); Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ... 'OptimizeHyperparameters',{'Lambda'}, ... 'HyperparameterOptimizationOptions',options); Loss4 = loss(Cmdl,TestX,LabelTest)
Warning: Solver LBFGS was not able to converge to a solution. Copying objective function to workers... Done copying objective function to workers. |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 1 | 6 | Best | 0.5293 | 39.885 | 0.5293 | 0.5293 | 0.20333 | | 2 | 6 | Accept | 0.8022 | 43.475 | 0.5293 | 0.66575 | 0.77337 | | 3 | 6 | Best | 0.0406 | 52.594 | 0.0406 | 0.11113 | 9.1082e-09 | | 4 | 6 | Best | 0.0403 | 54.73 | 0.0403 | 0.060037 | 2.3947e-09 | | 5 | 6 | Accept | 0.0695 | 124.96 | 0.0403 | 0.040319 | 0.001361 | | 6 | 6 | Accept | 0.0406 | 53.691 | 0.0403 | 0.040207 | 1.0005e-09 | | 7 | 6 | Best | 0.0388 | 178.69 | 0.0388 | 0.038811 | 1.4358e-06 | | 8 | 6 | Accept | 0.0615 | 138.53 | 0.0388 | 0.038817 | 0.00088731 | | 9 | 6 | Best | 0.0385 | 61.81 | 0.0385 | 0.038557 | 7.4709e-08 | | 10 | 6 | Accept | 0.0399 | 54.198 | 0.0385 | 0.038555 | 2.1909e-08 | | 11 | 6 | Accept | 0.0402 | 234.55 | 0.0385 | 0.038639 | 0.000101 | | 12 | 6 | Accept | 0.0431 | 198.09 | 0.0385 | 0.038636 | 0.00018896 | | 13 | 6 | Accept | 0.0393 | 75.811 | 0.0385 | 0.039016 | 1.1597e-07 | | 14 | 6 | Accept | 0.0387 | 61.281 | 0.0385 | 0.038908 | 7.0518e-08 | | 15 | 6 | Accept | 0.0393 | 125.73 | 0.0385 | 0.038931 | 2.8429e-07 | | 16 | 6 | Accept | 0.0397 | 89.804 | 0.0385 | 0.039106 | 1.4603e-07 | | 17 | 6 | Accept | 0.0391 | 126.88 | 0.0385 | 0.039081 | 3.0065e-07 | | 18 | 6 | Accept | 0.0398 | 56.157 | 0.0385 | 0.039123 | 4.1563e-08 | | 19 | 6 | Accept | 0.0406 | 55.25 | 0.0385 | 0.039122 | 1.0014e-09 | | 20 | 6 | Accept | 0.0385 | 272.92 | 0.0385 | 0.039127 | 9.568e-06 | |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 21 | 6 | Accept | 0.0412 | 55.191 | 0.0385 | 0.039124 | 3.3737e-09 | | 22 | 6 | Accept | 0.0394 | 229.72 | 0.0385 | 0.039117 | 3.2757e-06 | | 23 | 6 | Best | 0.0379 | 295.55 | 0.0379 | 0.039116 | 2.8439e-05 | | 24 | 6 | Accept | 0.0394 | 168.74 | 0.0379 | 0.039111 | 9.778e-07 | | 25 | 6 | Accept | 0.039 | 281.91 | 0.0379 | 0.039112 | 8.0694e-06 | | 26 | 6 | Accept | 0.8865 | 54.865 | 0.0379 | 0.038932 | 9.9885 | | 27 | 6 | Accept | 0.0381 | 300.7 | 0.0379 | 0.037996 | 2.6027e-05 | | 28 | 6 | Accept | 0.0406 | 54.611 | 0.0379 | 0.037996 | 1.6057e-09 | | 29 | 6 | Accept | 0.1272 | 76.648 | 0.0379 | 0.037997 | 0.012507 | | 30 | 6 | Accept | 0.0403 | 57.931 | 0.0379 | 0.037997 | 4.9907e-08 | __________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 724.6036 seconds. Total objective function evaluation time: 3674.8899 Best observed feasible point: Lambda __________ 2.8439e-05 Observed objective function value = 0.0379 Estimated objective function value = 0.03801 Function evaluation time = 295.5515 Best estimated feasible point (according to models): Lambda __________ 2.6027e-05 Estimated objective function value = 0.037997 Estimated function evaluation time = 297.6756 Loss4 = 0.0440
Классификатор, основанный на избыточной разреженной фильтрации с 1000 извлеченными функциями, имеет самую низкую тестовую потерю любого классификатора, еще протестированного.
Mdl5 = rica(Xtrain,q,'IterationLimit',400,'Standardize',true); NewX = transform(Mdl5,Xtrain); TestX = transform(Mdl5,Xtest); Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ... 'OptimizeHyperparameters',{'Lambda'}, ... 'HyperparameterOptimizationOptions',options); Loss5 = loss(Cmdl,TestX,LabelTest)
Warning: Solver LBFGS was not able to converge to a solution. Copying objective function to workers... Done copying objective function to workers. |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 1 | 6 | Best | 0.0764 | 46.206 | 0.0764 | 0.0764 | 8.4258e-09 | | 2 | 6 | Accept | 0.077 | 141.95 | 0.0764 | 0.0767 | 6.9536e-06 | | 3 | 6 | Accept | 0.0771 | 146.87 | 0.0764 | 0.076414 | 7.3378e-06 | | 4 | 6 | Best | 0.0709 | 182.51 | 0.0709 | 0.0709 | 0.48851 | | 5 | 6 | Accept | 0.0764 | 46.923 | 0.0709 | 0.070903 | 5.0695e-09 | | 6 | 6 | Best | 0.068 | 294.89 | 0.068 | 0.068004 | 0.0029652 | | 7 | 6 | Accept | 0.125 | 99.095 | 0.068 | 0.068001 | 9.9814 | | 8 | 6 | Accept | 0.0693 | 321.66 | 0.068 | 0.067999 | 0.0015167 | | 9 | 6 | Accept | 0.0882 | 138.03 | 0.068 | 0.068 | 1.8203 | | 10 | 6 | Accept | 0.0753 | 285.07 | 0.068 | 0.067991 | 0.00042423 | | 11 | 6 | Accept | 0.0764 | 47.704 | 0.068 | 0.067984 | 1.6326e-07 | | 12 | 6 | Accept | 0.0763 | 46.514 | 0.068 | 0.06798 | 1.0048e-09 | | 13 | 6 | Best | 0.0643 | 252.2 | 0.0643 | 0.0643 | 0.095965 | | 14 | 6 | Accept | 0.0766 | 168.37 | 0.0643 | 0.0643 | 9.1336e-07 | | 15 | 6 | Accept | 0.0753 | 153.29 | 0.0643 | 0.064301 | 4.8641e-05 | | 16 | 6 | Accept | 0.0662 | 256.65 | 0.0643 | 0.064298 | 0.0093576 | | 17 | 6 | Best | 0.0632 | 224.2 | 0.0632 | 0.063226 | 0.031314 | | 18 | 6 | Accept | 0.0673 | 219.59 | 0.0632 | 0.063201 | 0.20528 | | 19 | 6 | Accept | 0.0637 | 244.17 | 0.0632 | 0.063208 | 0.075001 | | 20 | 6 | Accept | 0.064 | 234.85 | 0.0632 | 0.06321 | 0.081232 | |================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | Lambda | | | workers | result | | runtime | (observed) | (estim.) | | |================================================================================================| | 21 | 6 | Accept | 0.0646 | 242.2 | 0.0632 | 0.063315 | 0.078081 | | 22 | 6 | Accept | 0.0633 | 217.97 | 0.0632 | 0.063233 | 0.039495 | | 23 | 6 | Accept | 0.0643 | 224.22 | 0.0632 | 0.063496 | 0.052107 | | 24 | 6 | Accept | 0.0761 | 45.102 | 0.0632 | 0.063509 | 4.3946e-08 | | 25 | 6 | Accept | 0.0645 | 221.24 | 0.0632 | 0.063778 | 0.044455 | | 26 | 6 | Accept | 0.0763 | 44.572 | 0.0632 | 0.063778 | 1.9139e-09 | | 27 | 6 | Accept | 0.0639 | 216.9 | 0.0632 | 0.063791 | 0.041759 | | 28 | 6 | Accept | 0.0766 | 45.609 | 0.0632 | 0.06379 | 2.0642e-08 | | 29 | 6 | Accept | 0.0765 | 121.35 | 0.0632 | 0.063789 | 3.5882e-07 | | 30 | 6 | Accept | 0.0636 | 215.47 | 0.0632 | 0.063755 | 0.038062 | __________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 952.7987 seconds. Total objective function evaluation time: 5145.3787 Best observed feasible point: Lambda ________ 0.031314 Observed objective function value = 0.0632 Estimated objective function value = 0.063828 Function evaluation time = 224.2018 Best estimated feasible point (according to models): Lambda ________ 0.044455 Estimated objective function value = 0.063755 Estimated function evaluation time = 219.4845 Loss5 = 0.0748
Классификатор, основанный на RICA с 1000 извлечёнными функциями, имеет аналогичную потерю теста с классификатором RICA на основе 200 извлечённых функций.
bayesopt
Функции редукции данных имеют следующие параметры настройки:
Предел итерации
Функция, либо rica
или sparsefilt
Параметрический Lambda
Количество выученных функций q
The fitcecoc
параметр регуляризации также влияет на точность обученного классификатора. Включите этот параметр также в список гиперпараметров.
Чтобы эффективно искать среди доступных параметров, попробуйте bayesopt
. Используйте следующую целевую функцию, которая включает параметры, переданные из рабочей области.
function objective = filterica(x,Xtrain,Xtest,LabelTrain,LabelTest,winit) initW = winit(1:size(Xtrain,2),1:x.q); if char(x.solver) == 'r' Mdl = rica(Xtrain,x.q,'Lambda',x.lambda,'IterationLimit',x.iterlim, ... 'InitialTransformWeights',initW,'Standardize',true); else Mdl = sparsefilt(Xtrain,x.q,'Lambda',x.lambda,'IterationLimit',x.iterlim, ... 'InitialTransformWeights',initW); end NewX = transform(Mdl,Xtrain); TestX = transform(Mdl,Xtest); t = templateLinear('Lambda',x.lambdareg,'Solver','lbfgs'); Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t); objective = loss(Cmdl,TestX,LabelTest);
Чтобы удалить источники изменений, исправьте матрицу начального веса преобразования.
W = randn(1e4,1e3);
Создайте гиперпараметры для целевой функции.
iterlim = optimizableVariable('iterlim',[5,500],'Type','integer'); lambda = optimizableVariable('lambda',[0,10]); solver = optimizableVariable('solver',{'r','s'},'Type','categorical'); qvar = optimizableVariable('q',[10,1000],'Type','integer'); lambdareg = optimizableVariable('lambdareg',[1e-6,1],'Transform','log'); vars = [iterlim,lambda,solver,qvar,lambdareg];
Запустите оптимизацию без предупреждений, которые возникают, когда внутренние оптимизации не запускаются до своего завершения. Запустите для 60 итераций вместо заданных по умолчанию 30, чтобы дать оптимизации больше шансов найти хорошее значение.
warning('off','stats:classreg:learning:fsutils:Solver:LBFGSUnableToConverge'); results = bayesopt(@(x) filterica(x,Xtrain,Xtest,LabelTrain,LabelTest,W),vars, ... 'UseParallel',true,'MaxObjectiveEvaluations',60); warning('on','stats:classreg:learning:fsutils:Solver:LBFGSUnableToConverge');
Copying objective function to workers... Done copying objective function to workers. |============================================================================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | iterlim | lambda | solver | q | lambdareg | | | workers | result | | runtime | (observed) | (estim.) | | | | | | |============================================================================================================================================================| | 1 | 6 | Best | 0.16408 | 33.743 | 0.16408 | 0.16408 | 140 | 9.4661 | s | 98 | 0.0007106 | | 2 | 6 | Best | 0.079213 | 51.975 | 0.079213 | 0.09064 | 10 | 9.466 | r | 685 | 0.010462 | | 3 | 6 | Best | 0.074897 | 82.031 | 0.074897 | 0.074983 | 32 | 3.7554 | r | 689 | 0.13737 | | 4 | 6 | Accept | 0.07546 | 93.221 | 0.074897 | 0.075073 | 178 | 3.9741 | r | 196 | 0.1829 | | 5 | 6 | Accept | 0.13924 | 30.444 | 0.074897 | 0.074933 | 282 | 0.36123 | r | 33 | 0.99029 | | 6 | 6 | Accept | 0.083964 | 133 | 0.074897 | 0.074933 | 58 | 9.7653 | r | 685 | 0.0014623 | | 7 | 6 | Accept | 0.08128 | 33.609 | 0.074897 | 0.074957 | 8 | 5.6351 | r | 519 | 0.0065822 | | 8 | 6 | Accept | 0.090751 | 203.96 | 0.074897 | 0.074913 | 131 | 0.73308 | r | 577 | 2.1172e-05 | | 9 | 6 | Accept | 0.090001 | 172.38 | 0.074897 | 0.074904 | 146 | 8.1899 | r | 454 | 1.4417e-05 | | 10 | 6 | Accept | 0.080191 | 316.8 | 0.074897 | 0.074897 | 164 | 0.48783 | r | 727 | 0.004936 | | 11 | 6 | Best | 0.060472 | 40.777 | 0.060472 | 0.060731 | 5 | 2.3201 | s | 530 | 1.1957e-06 | | 12 | 6 | Accept | 0.079027 | 45.841 | 0.060472 | 0.060632 | 8 | 0.55541 | r | 696 | 0.030914 | | 13 | 6 | Accept | 0.074823 | 237.43 | 0.060472 | 0.06067 | 109 | 4.5352 | r | 781 | 0.12274 | | 14 | 6 | Accept | 0.84009 | 85.121 | 0.060472 | 0.060468 | 306 | 0.59533 | s | 148 | 0.89675 | | 15 | 6 | Accept | 0.15637 | 200.13 | 0.060472 | 0.060451 | 90 | 3.0192 | s | 999 | 0.0043768 | | 16 | 6 | Accept | 0.69006 | 14.273 | 0.060472 | 0.06047 | 6 | 9.4568 | s | 407 | 0.13833 | | 17 | 6 | Accept | 0.093035 | 205.83 | 0.060472 | 0.060469 | 263 | 2.3083 | r | 308 | 1.0016e-06 | | 18 | 6 | Accept | 0.18753 | 6.0238 | 0.060472 | 0.060527 | 36 | 9.806 | s | 24 | 8.3653e-06 | | 19 | 6 | Accept | 0.119 | 749.98 | 0.060472 | 0.060751 | 482 | 0.51927 | s | 818 | 1.5416e-06 | | 20 | 6 | Accept | 0.076414 | 751.21 | 0.060472 | 0.060754 | 387 | 9.9936 | r | 784 | 0.26786 | |============================================================================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | iterlim | lambda | solver | q | lambdareg | | | workers | result | | runtime | (observed) | (estim.) | | | | | | |============================================================================================================================================================| | 21 | 6 | Accept | 0.099332 | 7.2298 | 0.060472 | 0.060828 | 20 | 0.78894 | s | 49 | 1.0335e-06 | | 22 | 6 | Accept | 0.090139 | 7.9815 | 0.060472 | 0.060858 | 11 | 3.2973 | r | 88 | 2.7437e-06 | | 23 | 6 | Accept | 0.076696 | 323.64 | 0.060472 | 0.060872 | 120 | 1.9199 | r | 999 | 0.2537 | | 24 | 6 | Accept | 0.098003 | 50.544 | 0.060472 | 0.060876 | 492 | 1.7197 | r | 27 | 0.00020896 | | 25 | 6 | Accept | 0.10383 | 56.568 | 0.060472 | 0.06101 | 11 | 5.256 | s | 971 | 0.00054471 | | 26 | 6 | Accept | 0.14405 | 30.426 | 0.060472 | 0.060797 | 477 | 5.5475 | r | 12 | 0.022342 | | 27 | 6 | Accept | 0.09046 | 53.398 | 0.060472 | 0.060815 | 13 | 2.1216 | r | 986 | 1.1811e-06 | | 28 | 6 | Best | 0.051641 | 99.452 | 0.051641 | 0.051368 | 23 | 2.6976 | s | 985 | 1.0558e-06 | | 29 | 6 | Accept | 0.10016 | 6.4162 | 0.051641 | 0.051365 | 6 | 3.7223 | r | 69 | 9.2926e-05 | | 30 | 6 | Accept | 0.10943 | 40.676 | 0.051641 | 0.051391 | 488 | 5.2092 | r | 19 | 2.4162e-05 | | 31 | 6 | Accept | 0.086761 | 7.8419 | 0.051641 | 0.051393 | 24 | 6.5535 | r | 42 | 0.0013244 | | 32 | 6 | Best | 0.0504 | 96.816 | 0.0504 | 0.050526 | 14 | 9.929 | s | 1000 | 2.8809e-06 | | 33 | 6 | Accept | 0.088789 | 81.158 | 0.0504 | 0.050525 | 14 | 1.0441 | r | 927 | 0.00021061 | | 34 | 6 | Accept | 0.083083 | 887.17 | 0.0504 | 0.05052 | 351 | 6.8834 | r | 978 | 0.0026404 | | 35 | 6 | Best | 0.050023 | 99.493 | 0.050023 | 0.050372 | 19 | 9.9813 | s | 899 | 1.0257e-06 | | 36 | 6 | Accept | 0.053338 | 113.36 | 0.050023 | 0.050499 | 7 | 4.7855 | s | 984 | 1.8611e-06 | | 37 | 6 | Accept | 0.089024 | 70.047 | 0.050023 | 0.0505 | 15 | 8.8301 | r | 984 | 6.0636e-06 | | 38 | 6 | Accept | 0.052029 | 95.822 | 0.050023 | 0.050551 | 7 | 9.759 | s | 996 | 3.7871e-06 | | 39 | 6 | Accept | 0.085992 | 73.422 | 0.050023 | 0.050528 | 5 | 2.7837 | r | 968 | 0.004483 | | 40 | 6 | Accept | 0.091159 | 5.8348 | 0.050023 | 0.05052 | 15 | 8.7732 | r | 37 | 0.084632 | |============================================================================================================================================================| | Iter | Active | Eval | Objective | Objective | BestSoFar | BestSoFar | iterlim | lambda | solver | q | lambdareg | | | workers | result | | runtime | (observed) | (estim.) | | | | | | |============================================================================================================================================================| | 41 | 6 | Best | 0.046444 | 152.93 | 0.046444 | 0.047062 | 30 | 4.0843 | s | 997 | 7.279e-06 | | 42 | 6 | Accept | 0.052712 | 58.107 | 0.046444 | 0.04698 | 12 | 0.99592 | s | 652 | 1.0258e-06 | | 43 | 6 | Accept | 0.058005 | 91.928 | 0.046444 | 0.047263 | 10 | 5.511 | s | 1000 | 2.4589e-05 | | 44 | 6 | Accept | 0.055413 | 103.25 | 0.046444 | 0.047306 | 7 | 5.6791 | s | 953 | 1.4656e-06 | | 45 | 6 | Accept | 0.052517 | 96.201 | 0.046444 | 0.049604 | 10 | 5.9403 | s | 996 | 1.0525e-05 | | 46 | 6 | Accept | 0.089527 | 76.617 | 0.046444 | 0.046888 | 20 | 1.0744 | r | 965 | 0.96766 | | 47 | 6 | Accept | 0.050062 | 99.709 | 0.046444 | 0.046735 | 12 | 9.9236 | s | 975 | 4.5916e-06 | | 48 | 6 | Accept | 0.21166 | 90.117 | 0.046444 | 0.049716 | 495 | 1.1996 | s | 86 | 0.00022338 | | 49 | 6 | Accept | 0.054535 | 79.1 | 0.046444 | 0.046679 | 6 | 0.22929 | s | 967 | 7.6974e-06 | | 50 | 6 | Accept | 0.12385 | 964.74 | 0.046444 | 0.049963 | 474 | 4.7085 | s | 991 | 8.6984e-05 | | 51 | 6 | Accept | 0.052016 | 76.098 | 0.046444 | 0.049914 | 10 | 1.0798 | s | 922 | 1.133e-06 | | 52 | 6 | Accept | 0.048984 | 95.054 | 0.046444 | 0.049891 | 12 | 4.69 | s | 976 | 1.0189e-06 | | 53 | 6 | Accept | 0.1948 | 889.11 | 0.046444 | 0.047903 | 466 | 7.9582 | s | 986 | 0.0012319 | | 54 | 6 | Accept | 0.10652 | 5.076 | 0.046444 | 0.047961 | 10 | 5.9107 | r | 40 | 0.52677 | | 55 | 6 | Accept | 0.074194 | 319.41 | 0.046444 | 0.04981 | 130 | 2.6437 | s | 997 | 7.8756e-06 | | 56 | 6 | Accept | 0.1014 | 45.184 | 0.046444 | 0.049828 | 480 | 6.1835 | r | 24 | 2.0019e-06 | | 57 | 6 | Accept | 0.33214 | 3.1996 | 0.046444 | 0.049785 | 12 | 7.4538 | s | 13 | 0.016248 | | 58 | 6 | Accept | 0.054348 | 96.616 | 0.046444 | 0.050832 | 12 | 2.8605 | s | 987 | 4.7951e-06 | | 59 | 6 | Accept | 0.71471 | 3.0555 | 0.046444 | 0.050852 | 10 | 9.8909 | s | 24 | 0.21362 | | 60 | 6 | Accept | 0.074353 | 67.118 | 0.046444 | 0.05084 | 8 | 5.5275 | s | 986 | 8.9716e-05 | __________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 60 reached. Total function evaluations: 60 Total elapsed time: 1921.1117 seconds. Total objective function evaluation time: 9107.7006 Best observed feasible point: iterlim lambda solver q lambdareg _______ ______ ______ ___ _________ 30 4.0843 s 997 7.279e-06 Observed objective function value = 0.046444 Estimated objective function value = 0.053743 Function evaluation time = 152.932 Best estimated feasible point (according to models): iterlim lambda solver q lambdareg _______ ______ ______ ___ _________ 10 1.0798 s 922 1.133e-06 Estimated objective function value = 0.05084 Estimated function evaluation time = 90.9315
Получившийся классификатор не имеет лучших (более низких) потерь, чем классификатор, использующий sparsefilt
для 1000 функций, обученных для 10 итераций.
Просмотрите коэффициенты фильтра для лучших гиперпараметров, которые bayesopt
найдено. На полученных изображениях показаны формы извлечённых функций. Эти формы распознаются как фрагменты рукописных цифр.
Xtbl = results.XAtMinObjective; Q = Xtbl.q; initW = W(1:size(Xtrain,2),1:Q); if char(Xtbl.solver) == 'r' Mdl = rica(Xtrain,Q,'Lambda',Xtbl.lambda,'IterationLimit',Xtbl.iterlim, ... 'InitialTransformWeights',initW,'Standardize',true); else Mdl = sparsefilt(Xtrain,Q,'Lambda',Xtbl.lambda,'IterationLimit',Xtbl.iterlim, ... 'InitialTransformWeights',initW); end Wts = Mdl.TransformWeights; Wts = reshape(Wts,[28,28,Q]); [dx,dy,~,~] = size(Wts); for f = 1:Q Wvec = Wts(:,:,f); Wvec = Wvec(:); Wvec =(Wvec - min(Wvec))/(max(Wvec) - min(Wvec)); Wts(:,:,f) = reshape(Wvec,dx,dy); end m = ceil(sqrt(Q)); n = m; img = zeros(m*dx,n*dy); f = 1; for i = 1:m for j = 1:n if (f <= Q) img((i-1)*dx+1:i*dx,(j-1)*dy+1:j*dy,:) = Wts(:,:,f); f = f+1; end end end imshow(img);
Warning: Solver LBFGS was not able to converge to a solution.
Код функции, которая читает данные в рабочую область:
function [X,L] = processMNISTdata(imageFileName,labelFileName) [fileID,errmsg] = fopen(imageFileName,'r','b'); if fileID < 0 error(errmsg); end %% % First read the magic number. This number is 2051 for image data, and % 2049 for label data magicNum = fread(fileID,1,'int32',0,'b'); if magicNum == 2051 fprintf('\nRead MNIST image data...\n') end %% % Then read the number of images, number of rows, and number of columns numImages = fread(fileID,1,'int32',0,'b'); fprintf('Number of images in the dataset: %6d ...\n',numImages); numRows = fread(fileID,1,'int32',0,'b'); numCols = fread(fileID,1,'int32',0,'b'); fprintf('Each image is of %2d by %2d pixels...\n',numRows,numCols); %% % Read the image data X = fread(fileID,inf,'unsigned char'); %% % Reshape the data to array X X = reshape(X,numCols,numRows,numImages); X = permute(X,[2 1 3]); %% % Then flatten each image data into a 1 by (numRows*numCols) vector, and % store all the image data into a numImages by (numRows*numCols) array. X = reshape(X,numRows*numCols,numImages)'; fprintf(['The image data is read to a matrix of dimensions: %6d by %4d...\n',... 'End of reading image data.\n'],size(X,1),size(X,2)); %% % Close the file fclose(fileID); %% % Similarly, read the label data. [fileID,errmsg] = fopen(labelFileName,'r','b'); if fileID < 0 error(errmsg); end magicNum = fread(fileID,1,'int32',0,'b'); if magicNum == 2049 fprintf('\nRead MNIST label data...\n') end numItems = fread(fileID,1,'int32',0,'b'); fprintf('Number of labels in the dataset: %6d ...\n',numItems); L = fread(fileID,inf,'unsigned char'); fprintf(['The label data is read to a matrix of dimensions: %6d by %2d...\n',... 'End of reading label data.\n'],size(L,1),size(L,2)); fclose(fileID);
[1] Янн ЛеКун (Courant Institute, NYU) и Коринна Кортес (Google Labs, New York) имеют авторские права на набор данных MNIST, который является производной работой от исходных наборов данных NIST. Набор данных MNIST доступен в соответствии с условиями лицензии Creative Commons Attribution-Share Alike 3.0, https://creativecommons.org/licenses/by-sa/3.0/
ReconstructionICA
| rica
| sparsefilt
| SparseFiltering