Эта ссылочная симуляция показывает, как измерить физический нисходящий канал совместно использованный канал (PDSCH) пропускная способность ссылки Нового радио (NR) 5G, как задано 3GPP стандарт NR. Пример реализует PDSCH и нисходящий канал совместно использованный канал (DL-SCH). Модель передатчика включает опорные сигналы демодуляции PDSCH (DM-RS), опорные сигналы отслеживания фазы PDSCH (PT-RS) и пакеты сигнала синхронизации (SS). Пример поддерживает и кластеризованную линию задержки (CDL) и каналы распространения коснувшейся линии задержки (TDL). Можно выполнить совершенную или практическую синхронизацию и оценку канала. Чтобы уменьшать общее время симуляции, можно выполнить точки ОСШ в цикле ОСШ параллельно при помощи Parallel Computing Toolbox™.
Этот пример измеряет пропускную способность PDSCH ссылки 5G, как задано 3GPP стандарт NR [1], [2], [3], [4].
Пример демонстрирует их 5G функции NR:
DL-SCH транспортируют кодирование канала
Несколько кодовых комбинаций, зависящих от количества слоев
PDSCH, PDSCH DM-RS и генерация PDSCH PT-RS
SS разрывают генерацию (PSS/SSS/PBCH/PBCH DM-RS)
Переменное расстояние между поднесущими и нумерология системы координат (2^n * 15 кГц)
Нормальный и расширенный циклический префикс
TDL и модели канала распространения CDL
Другие функции симуляции:
Предварительное кодирование поддиапазона PDSCH с помощью SVD
Модуляция CP-OFDM
Мудрый паз и не паз мудрый PDSCH и отображение DM-RS
SS разрывают генерацию (случаи A-E, растровое управление блоком SS/PBCH)
Совершенная или практическая синхронизация и оценка канала
Операция HARQ с 16 процессами
Пример использует одну часть полосы пропускания через целую несущую
Рисунок показывает реализованную цепь обработки. Для ясности разрываются DM-RS, PT-RS и SS, генерация не использованы.
Для более подробного объяснения шагов, реализованных в этом примере, см. Модель 5G Линии связи NR и DL-SCH и Передача PDSCH и Получите Цепь Обработки.
Этот пример поддерживает и широкополосное предварительное кодирование и предварительное кодирование поддиапазона. Матрица перед кодированием определяется с помощью SVD путем усреднения оценки канала через весь PDSCH PRBs в выделении (широкополосный случай) или в поддиапазоне. Нет никакого beamforming ни на каких блоках SS/PBCH в пакете SS.
Чтобы уменьшать общее время симуляции, можно использовать Parallel Computing Toolbox, чтобы выполнить точки ОСШ цикла ОСШ параллельно.
Установите продолжительность симуляции в терминах количества систем координат на 10 мс. Большое количество NFrames должно использоваться, чтобы привести к значимым результатам пропускной способности. Установите точки ОСШ симулировать. ОСШ для каждого слоя задан на RE, и это включает эффект сигнала и шума через все антенны. Для объяснения определения ОСШ, что этот пример использует, см. Определение ОСШ, Используемое в Симуляциях Ссылки.
simParameters = struct(); % Clear simParameters variable to contain all key simulation parameters simParameters.NFrames = 2; % Number of 10 ms frames simParameters.SNRIn = [-5 0 5]; % SNR range (dB)
Логическая переменная PerfectChannelEstimator
средства управления образовывают канал поведение синхронизации и оценка. Когда установлено в true
, совершенная оценка канала и синхронизация используются. В противном случае практическая оценка канала и синхронизация используются, на основе значений полученного PDSCH DM-RS.
simParameters.PerfectChannelEstimator = true;
Переменная DisplaySimulationInformation
управляет отображением информации о симуляции, такой как ID процесса HARQ, используемый для каждого подкадра. В случае ошибки CRC также отображено значение индекса к последовательности RV.
simParameters.DisplaySimulationInformation = true; % The |DisplayDiagnostics| flag enables the plotting of the EVM per layer. % This plot monitors the quality of the received signal after equalization. % The EVM per layer figure shows: % % * The EVM per layer per slot, which shows the EVM evolving with time. % * The EVM per layer per resource block, which shows the EVM in frequency. % % This figure evolves with the simulation and is updated with each slot. % Typically, low SNR or channel fades can result in decreased signal % quality (high EVM). The channel affects each layer differently, % therefore, the EVM values may differ across layers. % % In some cases, some layers can have a much higher EVM than others. These % low-quality layers can result in CRC errors. This behavior may be caused % by low SNR or by using too many layers for the channel conditions. You % can avoid this situation by a combination of higher SNR, lower number % of layers, higher number of antennas, and more robust transmission % (lower modulation scheme and target code rate). simParameters.DisplayDiagnostics = false;
Установите основные параметры симуляции. Они включают:
Полоса пропускания в блоках ресурса (12 поднесущих на блок ресурса).
Расстояние между поднесущими: 15, 30, 60, 120 (kHz)
Длина циклического префикса: нормальный или расширенный
ID ячейки
Количество передающих и приемных антенн
Подструктура, содержащая DL-SCH и параметры PDSCH, также задана. Это включает:
Целевая скорость кода
Выделенные блоки ресурса (PRBSet)
Схема Modulation: 'QPSK', '16QAM', '64QAM', '256QAM'
Количество слоев
PDSCH, сопоставляющий тип
Параметры конфигурации DM-RS
Параметры конфигурации PT-RS
Другая симуляция широкие параметры:
Модель канала распространения задерживает профиль (TDL или CDL)
SS разрывают параметры конфигурации. Обратите внимание на то, что SS разрываются, генерация может быть отключена путем установки SSBTransmitted
поле к [0 0 0 0].
% Set waveform type and PDSCH numerology (SCS and CP type) simParameters.Carrier = nrCarrierConfig; % Carrier resource grid configuration simParameters.Carrier.NSizeGrid = 51; % Bandwidth in number of resource blocks (51 RBs at 30 kHz SCS for 20 MHz BW) simParameters.Carrier.SubcarrierSpacing = 30; % 15, 30, 60, 120 (kHz) simParameters.Carrier.CyclicPrefix = 'Normal'; % 'Normal' or 'Extended' (Extended CP is relevant for 60 kHz SCS only) simParameters.Carrier.NCellID = 1; % Cell identity % SS burst configuration % The burst can be disabled by setting the SSBTransmitted field to all zeros simParameters.SSBurst = struct(); simParameters.SSBurst.BlockPattern = 'Case B'; % 30 kHz subcarrier spacing simParameters.SSBurst.SSBTransmitted = [0 1 0 1]; % Bitmap indicating blocks transmitted in the burst simParameters.SSBurst.SSBPeriodicity = 20; % SS burst set periodicity in ms (5, 10, 20, 40, 80, 160) % PDSCH/DL-SCH parameters simParameters.PDSCH = nrPDSCHConfig; % This PDSCH definition is the basis for all PDSCH transmissions in the BLER simulation simParameters.PDSCHExtension = struct(); % This structure is to hold additional simulation parameters for the DL-SCH and PDSCH % Define PDSCH time-frequency resource allocation per slot to be full grid (single full grid BWP) simParameters.PDSCH.PRBSet = 0:simParameters.Carrier.NSizeGrid-1; % PDSCH PRB allocation simParameters.PDSCH.SymbolAllocation = [0,simParameters.Carrier.SymbolsPerSlot]; % Starting symbol and number of symbols of each PDSCH allocation simParameters.PDSCH.MappingType = 'A'; % PDSCH mapping type ('A'(slot-wise),'B'(non slot-wise)) % Scrambling identifiers simParameters.PDSCH.NID = simParameters.Carrier.NCellID; simParameters.PDSCH.RNTI = 1; % PDSCH resource block mapping (TS 38.211 Section 7.3.1.6) simParameters.PDSCH.VRBToPRBInterleaving = 0; % Disable interleaved resource mapping simParameters.PDSCH.VRBBundleSize = 4; % Define the number of transmission layers to be used simParameters.PDSCH.NumLayers = 2; % Number of PDSCH transmission layers % Define codeword modulation and target coding rate % The number of codewords is directly dependent on the number of layers so ensure that % layers are set first before getting the codeword number if simParameters.PDSCH.NumCodewords > 1 % Multicodeword transmission (when number of layers being > 4) simParameters.PDSCH.Modulation = {'16QAM','16QAM'}; % 'QPSK', '16QAM', '64QAM', '256QAM' simParameters.PDSCHExtension.TargetCodeRate = [490 490]/1024; % Code rate used to calculate transport block sizes else simParameters.PDSCH.Modulation = '16QAM'; % 'QPSK', '16QAM', '64QAM', '256QAM' simParameters.PDSCHExtension.TargetCodeRate = 490/1024; % Code rate used to calculate transport block sizes end % DM-RS and antenna port configuration (TS 38.211 Section 7.4.1.1) simParameters.PDSCH.DMRS.DMRSPortSet = 0:simParameters.PDSCH.NumLayers-1; % DM-RS ports to use for the layers simParameters.PDSCH.DMRS.DMRSTypeAPosition = 2; % Mapping type A only. First DM-RS symbol position (2,3) simParameters.PDSCH.DMRS.DMRSLength = 1; % Number of front-loaded DM-RS symbols (1(single symbol),2(double symbol)) simParameters.PDSCH.DMRS.DMRSAdditionalPosition = 2; % Additional DM-RS symbol positions (max range 0...3) simParameters.PDSCH.DMRS.DMRSConfigurationType = 2; % DM-RS configuration type (1,2) simParameters.PDSCH.DMRS.NumCDMGroupsWithoutData = 1;% Number of CDM groups without data simParameters.PDSCH.DMRS.NIDNSCID = 1; % Scrambling identity (0...65535) simParameters.PDSCH.DMRS.NSCID = 0; % Scrambling initialization (0,1) % PT-RS configuration (TS 38.211 Section 7.4.1.2) simParameters.PDSCH.EnablePTRS = 0; % Enable or disable PT-RS (1 or 0) simParameters.PDSCH.PTRS.TimeDensity = 1; % PT-RS time density (L_PT-RS) (1, 2, 4) simParameters.PDSCH.PTRS.FrequencyDensity = 2; % PT-RS frequency density (K_PT-RS) (2 or 4) simParameters.PDSCH.PTRS.REOffset = '00'; % PT-RS resource element offset ('00', '01', '10', '11') simParameters.PDSCH.PTRS.PTRSPortSet = []; % PT-RS antenna port, subset of DM-RS port set. Empty corresponds to lower DM-RS port number % Reserved PRB patterns, if required (for CORESETs, forward compatibility etc) simParameters.PDSCH.ReservedPRB{1}.SymbolSet = []; % Reserved PDSCH symbols simParameters.PDSCH.ReservedPRB{1}.PRBSet = []; % Reserved PDSCH PRBs simParameters.PDSCH.ReservedPRB{1}.Period = []; % Periodicity of reserved resources % Additional simulation and DL-SCH related parameters % % PDSCH PRB bundling (TS 38.214 Section 5.1.2.3) simParameters.PDSCHExtension.PRGBundleSize = []; % 2, 4, or [] to signify "wideband" % % HARQ process and rate matching/TBS parameters simParameters.PDSCHExtension.XOverhead = 6*simParameters.PDSCH.EnablePTRS; % Set PDSCH rate matching overhead for TBS (Xoh) to 6 when PT-RS is enabled, otherwise 0 simParameters.PDSCHExtension.NHARQProcesses = 16; % Number of parallel HARQ processes to use simParameters.PDSCHExtension.EnableHARQ = true; % Enable retransmissions for each process, using RV sequence [0,2,3,1] % LDPC decoder parameters % Available algorithms: 'Belief propagation', 'Layered belief propagation', 'Normalized min-sum', 'Offset min-sum' simParameters.PDSCHExtension.LDPCDecodingAlgorithm = 'Normalized min-sum'; simParameters.PDSCHExtension.MaximumLDPCIterationCount = 6; % Define the overall transmission antenna geometry at end-points % If using a CDL propagation channel then the integer number of antenna elements is % turned into an antenna panel configured when the channel model object is created simParameters.NTxAnts = 8; % Number of PDSCH transmission antennas (1,2,4,8,16,32,64,128,256,512,1024) >= NumLayers if simParameters.PDSCH.NumCodewords > 1 % Multi-codeword transmission simParameters.NRxAnts = 8; % Number of UE receive antennas (even number >= NumLayers) else simParameters.NRxAnts = 2; % Number of UE receive antennas (1 or even number >= NumLayers) end % Define the general CDL/TDL propagation channel parameters simParameters.DelayProfile = 'CDL-C'; % Use CDL-C model (Urban macrocell model) simParameters.DelaySpread = 300e-9; simParameters.MaximumDopplerShift = 5; % Cross-check the PDSCH layering against the channel geometry validateNumLayers(simParameters);
Симуляция использует различные данные об основополосной форме волны, такие как частота дискретизации.
waveformInfo = nrOFDMInfo(simParameters.Carrier); % Get information about the baseband waveform after OFDM modulation step
Создайте объект модели канала для симуляции. И CDL и модели канала TDL поддерживаются [5].
% Constructed the CDL or TDL channel model object if contains(simParameters.DelayProfile,'CDL','IgnoreCase',true) channel = nrCDLChannel; % CDL channel object % Turn the overall number of antennas into a specific antenna panel % array geometry. The number of antennas configured is updated when % nTxAnts is not one of (1,2,4,8,16,32,64,128,256,512,1024) or nRxAnts % is not 1 or even. [channel.TransmitAntennaArray.Size,channel.ReceiveAntennaArray.Size] = ... hArrayGeometry(simParameters.NTxAnts,simParameters.NRxAnts); nTxAnts = prod(channel.TransmitAntennaArray.Size); nRxAnts = prod(channel.ReceiveAntennaArray.Size); simParameters.NTxAnts = nTxAnts; simParameters.NRxAnts = nRxAnts; else channel = nrTDLChannel; % TDL channel object % Set the channel geometry channel.NumTransmitAntennas = simParameters.NTxAnts; channel.NumReceiveAntennas = simParameters.NRxAnts; end % Assign simulation channel parameters and waveform sample rate to the object channel.DelayProfile = simParameters.DelayProfile; channel.DelaySpread = simParameters.DelaySpread; channel.MaximumDopplerShift = simParameters.MaximumDopplerShift; channel.SampleRate = waveformInfo.SampleRate;
Получите максимальное количество задержанных выборок каналом многопутевой компонент. Это вычисляется от пути к каналу с самой большой задержкой и задержкой реализации фильтра канала. Это требуется позже сбросить фильтр канала, чтобы получить полученный сигнал.
chInfo = info(channel); maxChDelay = ceil(max(chInfo.PathDelays*channel.SampleRate)) + chInfo.ChannelFilterDelay;
Этот раздел показывает, как зарезервировать ресурсы для передачи пакета SS.
% Get information about the SS burst configuration % Some dependent parameter assignments are required first simParameters.SSBurst.NCellID = simParameters.Carrier.NCellID; simParameters.SSBurst.SampleRate = waveformInfo.SampleRate; ssbInfo = hSSBurstInfo(simParameters.SSBurst); % Map the occupied subcarriers and transmitted symbols of the SS burst % (defined in the SS burst numerology) to PDSCH PRBs and symbols in the % PDSCH BWP/carrier numerology [mappedPRB,mappedSymbols] = mapNumerology(ssbInfo.OccupiedSubcarriers,ssbInfo.OccupiedSymbols,ssbInfo.NRB,simParameters.Carrier.NSizeGrid,ssbInfo.SubcarrierSpacing,simParameters.Carrier.SubcarrierSpacing); % Configure the PDSCH to reserve these resources so that the PDSCH % transmission does not overlap the SS burst reservation = nrPDSCHReservedConfig; reservation.SymbolSet = mappedSymbols; reservation.PRBSet = mappedPRB; reservation.Period = simParameters.SSBurst.SSBPeriodicity * (simParameters.Carrier.SubcarrierSpacing/15); % Period in slots simParameters.PDSCH.ReservedPRB{end+1} = reservation;
Чтобы определить пропускную способность в каждой точке ОСШ, анализируйте данные PDSCH на экземпляр передачи с помощью следующих шагов:
Обновите текущий процесс HARQ. Проверяйте состояние передачи на данный процесс HARQ, чтобы определить, требуется ли повторная передача. Если это не так затем сгенерируйте новые данные.
Генерация сетки ресурса. Выполните кодирование канала путем вызова nrDLSCH
Системный объект. Объект работает с входным транспортным блоком и сохраняет внутреннюю копию транспортного блока в случае, если повторная передача требуется. Модулируйте закодированные биты на PDSCH при помощи nrPDSCH
функция. Затем примените предварительное кодирование к получившемуся сигналу.
Генерация сигналов. OFDM модулируют сгенерированную сетку.
Шумное моделирование канала. Передайте форму волны через CDL или TDL, исчезающий канал. Добавьте AWGN. Для объяснения определения ОСШ, что этот пример использует, см. Определение ОСШ, Используемое в Симуляциях Ссылки.
Выполните синхронизацию и демодуляцию OFDM. Для идеальной синхронизации восстановите импульсную характеристику канала, чтобы синхронизировать принятую форму волны. Для практической синхронизации коррелируйте принятую форму волны с PDSCH DM-RS Затем, OFDM демодулируют синхронизируемый сигнал.
Выполните оценку канала. Для совершенной оценки канала восстановите импульсную характеристику канала и выполните демодуляцию OFDM. Для практической оценки канала используйте PDSCH DM-RS.
Выполните эквализацию и компенсацию CPE. MMSE компенсируют предполагаемый канал. Оцените общую ошибку фазы (CPE) при помощи символов PT-RS, затем откорректируйте ошибку в каждом символе OFDM в области значений ссылочных символов PT-RS OFDM.
Предварительное кодирование матричного вычисления. Сгенерируйте матрицу W перед кодированием для следующей передачи при помощи сингулярного разложения (SVD).
Декодируйте PDSCH. Чтобы получить оценку полученных кодовых комбинаций, демодулируйте и дескремблируйте восстановленные символы PDSCH за все пары передающей и приемной антенны, наряду с шумовой оценкой, при помощи nrPDSCHDecode
функция.
Декодируйте нисходящий канал совместно использованный канал (DL-SCH) и обновите процесс HARQ с ошибкой блока CRC. Передайте вектор декодируемых мягких битов к nrDLSCHDecoder
Системный объект. Объект декодирует кодовую комбинацию и возвращается, ошибка блока CRC раньше определяла пропускную способность системы.
% Array to store the maximum throughput for all SNR points maxThroughput = zeros(length(simParameters.SNRIn),1); % Array to store the simulation throughput for all SNR points simThroughput = zeros(length(simParameters.SNRIn),1); % Set up redundancy version (RV) sequence for all HARQ processes if simParameters.PDSCHExtension.EnableHARQ % In the final report of RAN WG1 meeting #91 (R1-1719301), it was % observed in R1-1717405 that if performance is the priority, [0 2 3 1] % should be used. If self-decodability is the priority, it should be % taken into account that the upper limit of the code rate at which % each RV is self-decodable is in the following order: 0>3>2>1 rvSeq = [0 2 3 1]; else % HARQ disabled - single transmission with RV=0, no retransmissions rvSeq = 0; end % Create DL-SCH encoder system object to perform transport channel encoding encodeDLSCH = nrDLSCH; encodeDLSCH.MultipleHARQProcesses = true; encodeDLSCH.TargetCodeRate = simParameters.PDSCHExtension.TargetCodeRate; % Create DL-SCH decoder system object to perform transport channel decoding % Use layered belief propagation for LDPC decoding, with half the number of % iterations as compared to the default for belief propagation decoding decodeDLSCH = nrDLSCHDecoder; decodeDLSCH.MultipleHARQProcesses = true; decodeDLSCH.TargetCodeRate = simParameters.PDSCHExtension.TargetCodeRate; decodeDLSCH.LDPCDecodingAlgorithm = simParameters.PDSCHExtension.LDPCDecodingAlgorithm; decodeDLSCH.MaximumLDPCIterationCount = simParameters.PDSCHExtension.MaximumLDPCIterationCount; for snrIdx = 1:numel(simParameters.SNRIn) % comment out for parallel computing % parfor snrIdx = 1:numel(simParameters.SNRIn) % uncomment for parallel computing % To reduce the total simulation time, you can execute this loop in % parallel by using the Parallel Computing Toolbox. Comment out the 'for' % statement and uncomment the 'parfor' statement. If the Parallel Computing % Toolbox is not installed, 'parfor' defaults to normal 'for' statement. % Because parfor-loop iterations are executed in parallel in a % nondeterministic order, the simulation information displayed for each SNR % point can be intertwined. To switch off simulation information display, % set the 'displaySimulationInformation' variable above to false % Reset the random number generator so that each SNR point will % experience the same noise realization rng('default'); % Take full copies of the simulation-level parameter structures so that they are not % PCT broadcast variables when using parfor simLocal = simParameters; waveinfoLocal = waveformInfo; % Take copies of channel-level parameters to simplify subsequent parameter referencing carrier = simLocal.Carrier; pdsch = simLocal.PDSCH; pdschextra = simLocal.PDSCHExtension; ssburst = simLocal.SSBurst; decodeDLSCHLocal = decodeDLSCH; % Copy of the decoder handle to help PCT classification of variable decodeDLSCHLocal.reset(); % Reset decoder at the start of each SNR point pathFilters = []; ssbWaveform = []; % Prepare simulation for new SNR point SNRdB = simLocal.SNRIn(snrIdx); fprintf('\nSimulating transmission scheme 1 (%dx%d) and SCS=%dkHz with %s channel at %gdB SNR for %d 10ms frame(s)\n', ... simLocal.NTxAnts,simLocal.NRxAnts,carrier.SubcarrierSpacing, ... simLocal.DelayProfile,SNRdB,simLocal.NFrames); % Specify the fixed order in which we cycle through the HARQ process IDs harqSequence = 0:pdschextra.NHARQProcesses-1; % Initialize the state of all HARQ processes harqEntity = HARQEntity(harqSequence,rvSeq,pdsch.NumCodewords); % Reset the channel so that each SNR point will experience the same % channel realization reset(channel); % Total number of slots in the simulation period NSlots = simLocal.NFrames * carrier.SlotsPerFrame; % Index to the start of the current set of SS burst samples to be % transmitted ssbSampleIndex = 1; % Obtain a precoding matrix (wtx) to be used in the transmission of the % first transport block estChannelGrid = getInitialChannelEstimate(carrier,simLocal.NTxAnts,channel); newWtx = getPrecodingMatrix(carrier,pdsch,estChannelGrid,pdschextra.PRGBundleSize); % Timing offset, updated in every slot for perfect synchronization and % when the correlation is strong for practical synchronization offset = 0; % Loop over the entire waveform length for nslot = 0:NSlots-1 % Update the carrier slot numbers for new slot carrier.NSlot = nslot; % Generate a new SS burst when necessary if (ssbSampleIndex==1) nSubframe = carrier.NSlot / carrier.SlotsPerSubframe; ssburst.NFrame = floor(nSubframe / 10); ssburst.NHalfFrame = mod(nSubframe / 5,2); [ssbWaveform,~,ssbInfo] = hSSBurst(ssburst); end % Calculate the transport block sizes for the transmission in the slot [pdschIndices,pdschIndicesInfo] = nrPDSCHIndices(carrier,pdsch); trBlkSizes = nrTBS(pdsch.Modulation,pdsch.NumLayers,numel(pdsch.PRBSet),pdschIndicesInfo.NREPerPRB,pdschextra.TargetCodeRate,pdschextra.XOverhead); % HARQ processing for cwIdx = 1:pdsch.NumCodewords % If new data for current process and codeword then create a new DL-SCH transport block if harqEntity.NewData(cwIdx) trBlk = randi([0 1],trBlkSizes(cwIdx),1); setTransportBlock(encodeDLSCH,trBlk,cwIdx-1,harqEntity.HARQProcessID); % If new data because of previous RV sequence time out then flush decoder soft buffer explicitly if harqEntity.SequenceTimeout(cwIdx) resetSoftBuffer(decodeDLSCHLocal,cwIdx-1,harqEntity.HARQProcessID); end end end % Encode the DL-SCH transport blocks codedTrBlocks = encodeDLSCH(pdsch.Modulation,pdsch.NumLayers, ... pdschIndicesInfo.G,harqEntity.RedundancyVersion,harqEntity.HARQProcessID); % Get precoding matrix (wtx) calculated in previous slot wtx = newWtx; % Create resource grid for a slot pdschGrid = nrResourceGrid(carrier,simLocal.NTxAnts); % PDSCH modulation and precoding pdschSymbols = nrPDSCH(carrier,pdsch,codedTrBlocks); [pdschAntSymbols,pdschAntIndices] = hPRGPrecode(size(pdschGrid),carrier.NStartGrid,pdschSymbols,pdschIndices,wtx); % PDSCH mapping in grid associated with PDSCH transmission period pdschGrid(pdschAntIndices) = pdschAntSymbols; % PDSCH DM-RS precoding and mapping dmrsSymbols = nrPDSCHDMRS(carrier,pdsch); dmrsIndices = nrPDSCHDMRSIndices(carrier,pdsch); [dmrsAntSymbols,dmrsAntIndices] = hPRGPrecode(size(pdschGrid),carrier.NStartGrid,dmrsSymbols,dmrsIndices,wtx); pdschGrid(dmrsAntIndices) = dmrsAntSymbols; % PDSCH PT-RS precoding and mapping ptrsSymbols = nrPDSCHPTRS(carrier,pdsch); ptrsIndices = nrPDSCHPTRSIndices(carrier,pdsch); [ptrsAntSymbols,ptrsAntIndices] = hPRGPrecode(size(pdschGrid),carrier.NStartGrid,ptrsSymbols,ptrsIndices,wtx); pdschGrid(ptrsAntIndices) = ptrsAntSymbols; % OFDM modulation txWaveform = nrOFDMModulate(carrier,pdschGrid); % Add the appropriate portion of SS burst waveform to the % transmitted waveform Nt = size(txWaveform,1); txWaveform = txWaveform + ssbWaveform(ssbSampleIndex + (0:Nt-1),:); ssbSampleIndex = mod(ssbSampleIndex + Nt,size(ssbWaveform,1)); % Pass data through channel model. Append zeros at the end of the % transmitted waveform to flush channel content. These zeros take % into account any delay introduced in the channel. This is a mix % of multipath delay and implementation delay. This value may % change depending on the sampling rate, delay profile and delay % spread txWaveform = [txWaveform; zeros(maxChDelay,size(txWaveform,2))]; %#ok<AGROW> [rxWaveform,pathGains,sampleTimes] = channel(txWaveform); % Add AWGN to the received time domain waveform % Normalize noise power by the IFFT size used in OFDM modulation, % as the OFDM modulator applies this normalization to the % transmitted waveform. Also normalize by the number of receive % antennas, as the channel model applies this normalization to the % received waveform, by default SNR = 10^(SNRdB/10); N0 = 1/sqrt(2.0*simLocal.NRxAnts*double(waveinfoLocal.Nfft)*SNR); noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform))); rxWaveform = rxWaveform + noise; if (simLocal.PerfectChannelEstimator) % Perfect synchronization. Use information provided by the % channel to find the strongest multipath component pathFilters = getPathFilters(channel); [offset,mag] = nrPerfectTimingEstimate(pathGains,pathFilters); else % Practical synchronization. Correlate the received waveform % with the PDSCH DM-RS to give timing offset estimate 't' and % correlation magnitude 'mag'. The function % hSkipWeakTimingOffset is used to update the receiver timing % offset. If the correlation peak in 'mag' is weak, the current % timing estimate 't' is ignored and the previous estimate % 'offset' is used [t,mag] = nrTimingEstimate(carrier,rxWaveform,dmrsIndices,dmrsSymbols); offset = hSkipWeakTimingOffset(offset,t,mag); % Display a warning if the estimated timing offset exceeds the % maximum channel delay if offset > maxChDelay warning(['Estimated timing offset (%d) is greater than the maximum channel delay (%d).' ... ' This will result in a decoding failure. This may be caused by low SNR,' ... ' or not enough DM-RS symbols to synchronize successfully.'],offset,maxChDelay); end end rxWaveform = rxWaveform(1+offset:end,:); % Perform OFDM demodulation on the received data to recreate the % resource grid, including padding in the event that practical % synchronization results in an incomplete slot being demodulated rxGrid = nrOFDMDemodulate(carrier,rxWaveform); [K,L,R] = size(rxGrid); if (L < carrier.SymbolsPerSlot) rxGrid = cat(2,rxGrid,zeros(K,carrier.SymbolsPerSlot-L,R)); end if (simLocal.PerfectChannelEstimator) % Perfect channel estimation, using the value of the path gains % provided by the channel. This channel estimate does not % include the effect of transmitter precoding estChannelGrid = nrPerfectChannelEstimate(carrier,pathGains,pathFilters,offset,sampleTimes); % Get perfect noise estimate (from the noise realization) noiseGrid = nrOFDMDemodulate(carrier,noise(1+offset:end ,:)); noiseEst = var(noiseGrid(:)); % Get precoding matrix for next slot newWtx = getPrecodingMatrix(carrier,pdsch,estChannelGrid,pdschextra.PRGBundleSize); % Get PDSCH resource elements from the received grid and % channel estimate [pdschRx,pdschHest,~,pdschHestIndices] = nrExtractResources(pdschIndices,rxGrid,estChannelGrid); % Apply precoding to channel estimate pdschHest = hPRGPrecode(size(estChannelGrid),carrier.NStartGrid,pdschHest,pdschHestIndices,permute(wtx,[2 1 3])); else % Practical channel estimation between the received grid and % each transmission layer, using the PDSCH DM-RS for each % layer. This channel estimate includes the effect of % transmitter precoding [estChannelGrid,noiseEst] = nrChannelEstimate(carrier,rxGrid,dmrsIndices,dmrsSymbols,'CDMLengths',pdsch.DMRS.CDMLengths); % Get PDSCH resource elements from the received grid and % channel estimate [pdschRx,pdschHest] = nrExtractResources(pdschIndices,rxGrid,estChannelGrid); % Remove precoding from estChannelGrid prior to precoding % matrix calculation estChannelGridPorts = precodeChannelEstimate(carrier,estChannelGrid,conj(wtx)); % Get precoding matrix for next slot newWtx = getPrecodingMatrix(carrier,pdsch,estChannelGridPorts,pdschextra.PRGBundleSize); end % Equalization [pdschEq,csi] = nrEqualizeMMSE(pdschRx,pdschHest,noiseEst); % Common phase error (CPE) compensation if ~isempty(ptrsIndices) % Initialize temporary grid to store equalized symbols tempGrid = nrResourceGrid(carrier,pdsch.NumLayers); % Extract PT-RS symbols from received grid and estimated % channel grid [ptrsRx,ptrsHest,~,~,ptrsHestIndices,ptrsLayerIndices] = nrExtractResources(ptrsIndices,rxGrid,estChannelGrid,tempGrid); if (simLocal.PerfectChannelEstimator) % Apply precoding to channel estimate ptrsHest = hPRGPrecode(size(estChannelGrid),carrier.NStartGrid,ptrsHest,ptrsHestIndices,permute(wtx,[2 1 3])); end % Equalize PT-RS symbols and map them to tempGrid ptrsEq = nrEqualizeMMSE(ptrsRx,ptrsHest,noiseEst); tempGrid(ptrsLayerIndices) = ptrsEq; % Estimate the residual channel at the PT-RS locations in % tempGrid cpe = nrChannelEstimate(tempGrid,ptrsIndices,ptrsSymbols); % Sum estimates across subcarriers, receive antennas, and % layers. Then, get the CPE by taking the angle of the % resultant sum cpe = angle(sum(cpe,[1 3 4])); % Map the equalized PDSCH symbols to tempGrid tempGrid(pdschIndices) = pdschEq; % Correct CPE in each OFDM symbol within the range of reference % PT-RS OFDM symbols symLoc = pdschIndicesInfo.PTRSSymbolSet(1)+1:pdschIndicesInfo.PTRSSymbolSet(end)+1; tempGrid(:,symLoc,:) = tempGrid(:,symLoc,:).*exp(-1i*cpe(symLoc)); % Extract PDSCH symbols pdschEq = tempGrid(pdschIndices); end % Decode PDSCH physical channel [dlschLLRs,rxSymbols] = nrPDSCHDecode(carrier,pdsch,pdschEq,noiseEst); % Display EVM per layer, per slot and per RB if (simLocal.DisplayDiagnostics) plotLayerEVM(NSlots,nslot,pdsch,size(pdschGrid),pdschIndices,pdschSymbols,pdschEq); end % Scale LLRs by CSI csi = nrLayerDemap(csi); % CSI layer demapping for cwIdx = 1:pdsch.NumCodewords Qm = length(dlschLLRs{cwIdx})/length(rxSymbols{cwIdx}); % bits per symbol csi{cwIdx} = repmat(csi{cwIdx}.',Qm,1); % expand by each bit per symbol dlschLLRs{cwIdx} = dlschLLRs{cwIdx} .* csi{cwIdx}(:); % scale by CSI end % Decode the DL-SCH transport channel decodeDLSCHLocal.TransportBlockLength = trBlkSizes; [decbits,blkerr] = decodeDLSCHLocal(dlschLLRs,pdsch.Modulation,pdsch.NumLayers,harqEntity.RedundancyVersion,harqEntity.HARQProcessID); % Store values to calculate throughput simThroughput(snrIdx) = simThroughput(snrIdx) + sum(~blkerr .* trBlkSizes); maxThroughput(snrIdx) = maxThroughput(snrIdx) + sum(trBlkSizes); % Update current process with CRC error and advance to next process procstatus = updateAndAdvance(harqEntity,blkerr,trBlkSizes,pdschIndicesInfo.G); if (simLocal.DisplaySimulationInformation) fprintf('\n(%3.2f%%) NSlot=%d, %s',100*(nslot+1)/NSlots,nslot,procstatus); end end % Display the results dynamically in the command window if (simLocal.DisplaySimulationInformation) fprintf('\n'); end fprintf('\nThroughput(Mbps) for %d frame(s) = %.4f\n',simLocal.NFrames,1e-6*simThroughput(snrIdx)/(simLocal.NFrames*10e-3)); fprintf('Throughput(%%) for %d frame(s) = %.4f\n',simLocal.NFrames,simThroughput(snrIdx)*100/maxThroughput(snrIdx)); end
Simulating transmission scheme 1 (8x2) and SCS=30kHz with CDL-C channel at -5dB SNR for 2 10ms frame(s) (2.50%) NSlot=0, HARQ Proc 0: CW0: Initial transmission failed (RV=0,CR=0.537116). (5.00%) NSlot=1, HARQ Proc 1: CW0: Initial transmission failed (RV=0,CR=0.537116). (7.50%) NSlot=2, HARQ Proc 2: CW0: Initial transmission failed (RV=0,CR=0.474736). (10.00%) NSlot=3, HARQ Proc 3: CW0: Initial transmission failed (RV=0,CR=0.474736). (12.50%) NSlot=4, HARQ Proc 4: CW0: Initial transmission failed (RV=0,CR=0.474736). (15.00%) NSlot=5, HARQ Proc 5: CW0: Initial transmission failed (RV=0,CR=0.474736). (17.50%) NSlot=6, HARQ Proc 6: CW0: Initial transmission failed (RV=0,CR=0.474736). (20.00%) NSlot=7, HARQ Proc 7: CW0: Initial transmission failed (RV=0,CR=0.474736). (22.50%) NSlot=8, HARQ Proc 8: CW0: Initial transmission failed (RV=0,CR=0.474736). (25.00%) NSlot=9, HARQ Proc 9: CW0: Initial transmission failed (RV=0,CR=0.474736). (27.50%) NSlot=10, HARQ Proc 10: CW0: Initial transmission failed (RV=0,CR=0.474736). (30.00%) NSlot=11, HARQ Proc 11: CW0: Initial transmission failed (RV=0,CR=0.474736). (32.50%) NSlot=12, HARQ Proc 12: CW0: Initial transmission failed (RV=0,CR=0.474736). (35.00%) NSlot=13, HARQ Proc 13: CW0: Initial transmission failed (RV=0,CR=0.474736). (37.50%) NSlot=14, HARQ Proc 14: CW0: Initial transmission failed (RV=0,CR=0.474736). (40.00%) NSlot=15, HARQ Proc 15: CW0: Initial transmission failed (RV=0,CR=0.474736). (42.50%) NSlot=16, HARQ Proc 0: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (45.00%) NSlot=17, HARQ Proc 1: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (47.50%) NSlot=18, HARQ Proc 2: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (50.00%) NSlot=19, HARQ Proc 3: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (52.50%) NSlot=20, HARQ Proc 4: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (55.00%) NSlot=21, HARQ Proc 5: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (57.50%) NSlot=22, HARQ Proc 6: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (60.00%) NSlot=23, HARQ Proc 7: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (62.50%) NSlot=24, HARQ Proc 8: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (65.00%) NSlot=25, HARQ Proc 9: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (67.50%) NSlot=26, HARQ Proc 10: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (70.00%) NSlot=27, HARQ Proc 11: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (72.50%) NSlot=28, HARQ Proc 12: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (75.00%) NSlot=29, HARQ Proc 13: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (77.50%) NSlot=30, HARQ Proc 14: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (80.00%) NSlot=31, HARQ Proc 15: CW0: Retransmission #1 passed (RV=2,CR=0.474736). (82.50%) NSlot=32, HARQ Proc 0: CW0: Initial transmission failed (RV=0,CR=0.474736). (85.00%) NSlot=33, HARQ Proc 1: CW0: Initial transmission failed (RV=0,CR=0.474736). (87.50%) NSlot=34, HARQ Proc 2: CW0: Initial transmission failed (RV=0,CR=0.474736). (90.00%) NSlot=35, HARQ Proc 3: CW0: Initial transmission failed (RV=0,CR=0.474736). (92.50%) NSlot=36, HARQ Proc 4: CW0: Initial transmission failed (RV=0,CR=0.474736). (95.00%) NSlot=37, HARQ Proc 5: CW0: Initial transmission failed (RV=0,CR=0.474736). (97.50%) NSlot=38, HARQ Proc 6: CW0: Initial transmission failed (RV=0,CR=0.474736). (100.00%) NSlot=39, HARQ Proc 7: CW0: Initial transmission failed (RV=0,CR=0.474736). Throughput(Mbps) for 2 frame(s) = 24.1728 Throughput(%) for 2 frame(s) = 40.0000 Simulating transmission scheme 1 (8x2) and SCS=30kHz with CDL-C channel at 0dB SNR for 2 10ms frame(s) (2.50%) NSlot=0, HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.537116). (5.00%) NSlot=1, HARQ Proc 1: CW0: Initial transmission passed (RV=0,CR=0.537116). (7.50%) NSlot=2, HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.474736). (10.00%) NSlot=3, HARQ Proc 3: CW0: Initial transmission passed (RV=0,CR=0.474736). (12.50%) NSlot=4, HARQ Proc 4: CW0: Initial transmission passed (RV=0,CR=0.474736). (15.00%) NSlot=5, HARQ Proc 5: CW0: Initial transmission passed (RV=0,CR=0.474736). (17.50%) NSlot=6, HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.474736). (20.00%) NSlot=7, HARQ Proc 7: CW0: Initial transmission passed (RV=0,CR=0.474736). (22.50%) NSlot=8, HARQ Proc 8: CW0: Initial transmission passed (RV=0,CR=0.474736). (25.00%) NSlot=9, HARQ Proc 9: CW0: Initial transmission passed (RV=0,CR=0.474736). (27.50%) NSlot=10, HARQ Proc 10: CW0: Initial transmission passed (RV=0,CR=0.474736). (30.00%) NSlot=11, HARQ Proc 11: CW0: Initial transmission passed (RV=0,CR=0.474736). (32.50%) NSlot=12, HARQ Proc 12: CW0: Initial transmission passed (RV=0,CR=0.474736). (35.00%) NSlot=13, HARQ Proc 13: CW0: Initial transmission passed (RV=0,CR=0.474736). (37.50%) NSlot=14, HARQ Proc 14: CW0: Initial transmission passed (RV=0,CR=0.474736). (40.00%) NSlot=15, HARQ Proc 15: CW0: Initial transmission passed (RV=0,CR=0.474736). (42.50%) NSlot=16, HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.474736). (45.00%) NSlot=17, HARQ Proc 1: CW0: Initial transmission passed (RV=0,CR=0.474736). (47.50%) NSlot=18, HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.474736). (50.00%) NSlot=19, HARQ Proc 3: CW0: Initial transmission passed (RV=0,CR=0.474736). (52.50%) NSlot=20, HARQ Proc 4: CW0: Initial transmission passed (RV=0,CR=0.474736). (55.00%) NSlot=21, HARQ Proc 5: CW0: Initial transmission passed (RV=0,CR=0.474736). (57.50%) NSlot=22, HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.474736). (60.00%) NSlot=23, HARQ Proc 7: CW0: Initial transmission passed (RV=0,CR=0.474736). (62.50%) NSlot=24, HARQ Proc 8: CW0: Initial transmission passed (RV=0,CR=0.474736). (65.00%) NSlot=25, HARQ Proc 9: CW0: Initial transmission passed (RV=0,CR=0.474736). (67.50%) NSlot=26, HARQ Proc 10: CW0: Initial transmission passed (RV=0,CR=0.474736). (70.00%) NSlot=27, HARQ Proc 11: CW0: Initial transmission passed (RV=0,CR=0.474736). (72.50%) NSlot=28, HARQ Proc 12: CW0: Initial transmission passed (RV=0,CR=0.474736). (75.00%) NSlot=29, HARQ Proc 13: CW0: Initial transmission passed (RV=0,CR=0.474736). (77.50%) NSlot=30, HARQ Proc 14: CW0: Initial transmission passed (RV=0,CR=0.474736). (80.00%) NSlot=31, HARQ Proc 15: CW0: Initial transmission passed (RV=0,CR=0.474736). (82.50%) NSlot=32, HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.474736). (85.00%) NSlot=33, HARQ Proc 1: CW0: Initial transmission passed (RV=0,CR=0.474736). (87.50%) NSlot=34, HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.474736). (90.00%) NSlot=35, HARQ Proc 3: CW0: Initial transmission passed (RV=0,CR=0.474736). (92.50%) NSlot=36, HARQ Proc 4: CW0: Initial transmission passed (RV=0,CR=0.474736). (95.00%) NSlot=37, HARQ Proc 5: CW0: Initial transmission passed (RV=0,CR=0.474736). (97.50%) NSlot=38, HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.474736). (100.00%) NSlot=39, HARQ Proc 7: CW0: Initial transmission passed (RV=0,CR=0.474736). Throughput(Mbps) for 2 frame(s) = 60.4320 Throughput(%) for 2 frame(s) = 100.0000 Simulating transmission scheme 1 (8x2) and SCS=30kHz with CDL-C channel at 5dB SNR for 2 10ms frame(s) (2.50%) NSlot=0, HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.537116). (5.00%) NSlot=1, HARQ Proc 1: CW0: Initial transmission passed (RV=0,CR=0.537116). (7.50%) NSlot=2, HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.474736). (10.00%) NSlot=3, HARQ Proc 3: CW0: Initial transmission passed (RV=0,CR=0.474736). (12.50%) NSlot=4, HARQ Proc 4: CW0: Initial transmission passed (RV=0,CR=0.474736). (15.00%) NSlot=5, HARQ Proc 5: CW0: Initial transmission passed (RV=0,CR=0.474736). (17.50%) NSlot=6, HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.474736). (20.00%) NSlot=7, HARQ Proc 7: CW0: Initial transmission passed (RV=0,CR=0.474736). (22.50%) NSlot=8, HARQ Proc 8: CW0: Initial transmission passed (RV=0,CR=0.474736). (25.00%) NSlot=9, HARQ Proc 9: CW0: Initial transmission passed (RV=0,CR=0.474736). (27.50%) NSlot=10, HARQ Proc 10: CW0: Initial transmission passed (RV=0,CR=0.474736). (30.00%) NSlot=11, HARQ Proc 11: CW0: Initial transmission passed (RV=0,CR=0.474736). (32.50%) NSlot=12, HARQ Proc 12: CW0: Initial transmission passed (RV=0,CR=0.474736). (35.00%) NSlot=13, HARQ Proc 13: CW0: Initial transmission passed (RV=0,CR=0.474736). (37.50%) NSlot=14, HARQ Proc 14: CW0: Initial transmission passed (RV=0,CR=0.474736). (40.00%) NSlot=15, HARQ Proc 15: CW0: Initial transmission passed (RV=0,CR=0.474736). (42.50%) NSlot=16, HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.474736). (45.00%) NSlot=17, HARQ Proc 1: CW0: Initial transmission passed (RV=0,CR=0.474736). (47.50%) NSlot=18, HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.474736). (50.00%) NSlot=19, HARQ Proc 3: CW0: Initial transmission passed (RV=0,CR=0.474736). (52.50%) NSlot=20, HARQ Proc 4: CW0: Initial transmission passed (RV=0,CR=0.474736). (55.00%) NSlot=21, HARQ Proc 5: CW0: Initial transmission passed (RV=0,CR=0.474736). (57.50%) NSlot=22, HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.474736). (60.00%) NSlot=23, HARQ Proc 7: CW0: Initial transmission passed (RV=0,CR=0.474736). (62.50%) NSlot=24, HARQ Proc 8: CW0: Initial transmission passed (RV=0,CR=0.474736). (65.00%) NSlot=25, HARQ Proc 9: CW0: Initial transmission passed (RV=0,CR=0.474736). (67.50%) NSlot=26, HARQ Proc 10: CW0: Initial transmission passed (RV=0,CR=0.474736). (70.00%) NSlot=27, HARQ Proc 11: CW0: Initial transmission passed (RV=0,CR=0.474736). (72.50%) NSlot=28, HARQ Proc 12: CW0: Initial transmission passed (RV=0,CR=0.474736). (75.00%) NSlot=29, HARQ Proc 13: CW0: Initial transmission passed (RV=0,CR=0.474736). (77.50%) NSlot=30, HARQ Proc 14: CW0: Initial transmission passed (RV=0,CR=0.474736). (80.00%) NSlot=31, HARQ Proc 15: CW0: Initial transmission passed (RV=0,CR=0.474736). (82.50%) NSlot=32, HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.474736). (85.00%) NSlot=33, HARQ Proc 1: CW0: Initial transmission passed (RV=0,CR=0.474736). (87.50%) NSlot=34, HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.474736). (90.00%) NSlot=35, HARQ Proc 3: CW0: Initial transmission passed (RV=0,CR=0.474736). (92.50%) NSlot=36, HARQ Proc 4: CW0: Initial transmission passed (RV=0,CR=0.474736). (95.00%) NSlot=37, HARQ Proc 5: CW0: Initial transmission passed (RV=0,CR=0.474736). (97.50%) NSlot=38, HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.474736). (100.00%) NSlot=39, HARQ Proc 7: CW0: Initial transmission passed (RV=0,CR=0.474736). Throughput(Mbps) for 2 frame(s) = 60.4320 Throughput(%) for 2 frame(s) = 100.0000
Отобразите измеренную пропускную способность. Это вычисляется как процент максимальной возможной пропускной способности ссылки, учитывая имеющиеся ресурсы для передачи данных.
figure; plot(simParameters.SNRIn,simThroughput*100./maxThroughput,'o-.') xlabel('SNR (dB)'); ylabel('Throughput (%)'); grid on; title(sprintf('%s (%dx%d) / NRB=%d / SCS=%dkHz', ... simParameters.DelayProfile,simParameters.NTxAnts,simParameters.NRxAnts, ... simParameters.Carrier.NSizeGrid,simParameters.Carrier.SubcarrierSpacing)); % Bundle key parameters and results into a combined structure for recording simResults.simParameters = simParameters; simResults.simThroughput = simThroughput; simResults.maxThroughput = maxThroughput;
Рисунок ниже показывает результаты пропускной способности, полученные, симулируя 10 000 подкадров (NFrames = 1000
, SNRIn = -18:2:16
).
3GPP TS 38.211. "NR; Физические каналы и модуляция". Проект Партнерства третьего поколения; Сеть радиодоступа Technical Specification Group.
3GPP TS 38.212. "NR; Мультиплексирование и кодирование канала". Проект Партнерства третьего поколения; Сеть радиодоступа Technical Specification Group.
3GPP TS 38.213. "NR; процедуры Физического уровня для управления". Проект Партнерства третьего поколения; Сеть радиодоступа Technical Specification Group.
3GPP TS 38.214. "NR; процедуры Физического уровня для данных". Проект Партнерства третьего поколения; Сеть радиодоступа Technical Specification Group.
3GPP TR 38.901. "Исследование модели канала для частот от 0,5 до 100 ГГц". Проект Партнерства третьего поколения; Сеть радиодоступа Technical Specification Group.
function validateNumLayers(simParameters) % Validate the number of layers, relative to the antenna geometry numlayers = simParameters.PDSCH.NumLayers; ntxants = simParameters.NTxAnts; nrxants = simParameters.NRxAnts; antennaDescription = sprintf('min(NTxAnts,NRxAnts) = min(%d,%d) = %d',ntxants,nrxants,min(ntxants,nrxants)); if numlayers > min(ntxants,nrxants) error('The number of layers (%d) must satisfy NumLayers <= %s', ... numlayers,antennaDescription); end % Display a warning if the maximum possible rank of the channel equals % the number of layers if (numlayers > 2) && (numlayers == min(ntxants,nrxants)) warning(['The maximum possible rank of the channel, given by %s, is equal to NumLayers (%d).' ... ' This may result in a decoding failure under some channel conditions.' ... ' Try decreasing the number of layers or increasing the channel rank' ... ' (use more transmit or receive antennas).'],antennaDescription,numlayers); %#ok<SPWRN> end end function estChannelGrid = getInitialChannelEstimate(carrier,nTxAnts,propchannel) % Obtain channel estimate before first transmission. This can be used to % obtain a precoding matrix for the first slot. ofdmInfo = nrOFDMInfo(carrier); chInfo = info(propchannel); maxChDelay = ceil(max(chInfo.PathDelays*propchannel.SampleRate)) + chInfo.ChannelFilterDelay; % Temporary waveform (only needed for the sizes) tmpWaveform = zeros((ofdmInfo.SampleRate/1000/carrier.SlotsPerSubframe)+maxChDelay,nTxAnts); % Filter through channel [~,pathGains,sampleTimes] = propchannel(tmpWaveform); % Perfect timing synch pathFilters = getPathFilters(propchannel); offset = nrPerfectTimingEstimate(pathGains,pathFilters); % Perfect channel estimate estChannelGrid = nrPerfectChannelEstimate(carrier,pathGains,pathFilters,offset,sampleTimes); end function wtx = getPrecodingMatrix(carrier,pdsch,hestGrid,prgbundlesize) % Calculate precoding matrices for all PRGs in the carrier that overlap % with the PDSCH allocation % Maximum CRB addressed by carrier grid maxCRB = carrier.NStartGrid + carrier.NSizeGrid - 1; % PRG size if nargin==4 && ~isempty(prgbundlesize) Pd_BWP = prgbundlesize; else Pd_BWP = maxCRB + 1; end % PRG numbers (1-based) for each RB in the carrier grid NPRG = ceil((maxCRB + 1) / Pd_BWP); prgset = repmat((1:NPRG),Pd_BWP,1); prgset = prgset(carrier.NStartGrid + (1:carrier.NSizeGrid).'); [~,~,R,P] = size(hestGrid); wtx = zeros([pdsch.NumLayers P NPRG]); for i = 1:NPRG % Subcarrier indices within current PRG and within the PDSCH % allocation thisPRG = find(prgset==i) - 1; thisPRG = intersect(thisPRG,pdsch.PRBSet(:) + carrier.NStartGrid,'rows'); prgSc = (1:12)' + 12*thisPRG'; prgSc = prgSc(:); if (~isempty(prgSc)) % Average channel estimate in PRG estAllocGrid = hestGrid(prgSc,:,:,:); Hest = permute(mean(reshape(estAllocGrid,[],R,P)),[2 3 1]); % SVD decomposition [~,~,V] = svd(Hest); wtx(:,:,i) = V(:,1:pdsch.NumLayers).'; end end wtx = wtx / sqrt(pdsch.NumLayers); % Normalize by NumLayers end function estChannelGrid = precodeChannelEstimate(carrier,estChannelGrid,W) % Apply precoding matrix W to the last dimension of the channel estimate [K,L,R,P] = size(estChannelGrid); estChannelGrid = reshape(estChannelGrid,[K*L R P]); estChannelGrid = hPRGPrecode([K L R P],carrier.NStartGrid,estChannelGrid,reshape(1:numel(estChannelGrid),[K*L R P]),W); estChannelGrid = reshape(estChannelGrid,K,L,R,[]); end function [mappedPRB,mappedSymbols] = mapNumerology(subcarriers,symbols,nrbs,nrbt,fs,ft) % Map the SSBurst numerology to PDSCH numerology. The outputs are: % - mappedPRB: 0-based PRB indices for carrier resource grid (arranged in a column) % - mappedSymbols: 0-based OFDM symbol indices in a slot for carrier resource grid (arranged in a row) % The input parameters are: % - subcarriers: 1-based row subscripts for SSB resource grid (arranged in a column) % - symbols: 1-based column subscripts for SSB resource grid (arranged in an N-by-4 matrix, 4 symbols for each transmitted burst in a row, N transmitted bursts) % SSB resource grid is sized using ssbInfo.NRB, normal CP, spanning 5 subframes % - nrbs: source (SSB) NRB % - nrbt: target (carrier) NRB % - fs: source (SSB) SCS % - ft: target (carrier) SCS mappedPRB = unique(fix((subcarriers-(nrbs*6) - 1)*fs/(ft*12) + nrbt/2),'stable'); symbols = symbols.'; symbols = symbols(:).' - 1; if (ft < fs) % If ft/fs < 1, reduction mappedSymbols = unique(fix(symbols*ft/fs),'stable'); else % Else, repetition by ft/fs mappedSymbols = reshape((0:(ft/fs-1))' + symbols(:)'*ft/fs,1,[]); end end function plotLayerEVM(NSlots,nslot,pdsch,siz,pdschIndices,pdschSymbols,pdschEq) % Plot EVM information persistent slotEVM; persistent rbEVM persistent evmPerSlot; if (nslot==0) slotEVM = comm.EVM; rbEVM = comm.EVM; evmPerSlot = NaN(NSlots,pdsch.NumLayers); figure; end evmPerSlot(nslot+1,:) = slotEVM(pdschSymbols,pdschEq); subplot(2,1,1); plot(0:(NSlots-1),evmPerSlot,'o-'); xlabel('Slot number'); ylabel('EVM (%)'); legend("layer " + (1:pdsch.NumLayers),'Location','EastOutside'); title('EVM per layer per slot'); subplot(2,1,2); [k,~,p] = ind2sub(siz,pdschIndices); rbsubs = floor((k-1) / 12); NRB = siz(1) / 12; evmPerRB = NaN(NRB,pdsch.NumLayers); for nu = 1:pdsch.NumLayers for rb = unique(rbsubs).' this = (rbsubs==rb & p==nu); evmPerRB(rb+1,nu) = rbEVM(pdschSymbols(this),pdschEq(this)); end end plot(0:(NRB-1),evmPerRB,'x-'); xlabel('Resource block'); ylabel('EVM (%)'); legend("layer " + (1:pdsch.NumLayers),'Location','EastOutside'); title(['EVM per layer per resource block, slot #' num2str(nslot)]); drawnow; end