В этом примере показано, как выполнить выбор переменной при помощи Байесовой регрессии лассо.
Регрессия лассо является методом линейной регрессии, который комбинирует регуляризацию и выбор переменной. Регуляризация помогает предотвратить сверхподбор кривой путем уменьшения величины коэффициентов регрессии. Частотное представление регрессии лассо отличается от того из других методов регуляризации, такой как, гребенчатая регрессия, потому что лассо приписывает значение точно 0 к коэффициентам регрессии, соответствующим предикторам, которые незначительны или избыточны.
Рассмотрите эту модель многофакторной линейной регрессии:
вектор из n ответов.
матрица p соответствующих наблюдаемых переменных предикторов.
вектор из p коэффициентов регрессии.
точка пересечения.
длина n вектор-столбец из единиц.
случайный вектор из iid Гауссовых воздействий со средним значением 0 и отклонением.
Целевая функция частотного представления регрессии лассо
штраф (или уменьшение) термин и, в отличие от других параметров, не является подходящим к данным. Необходимо задать значение для перед оценкой, и лучшая практика должна настроить ее. После того, как вы зададите значение, минимизирован относительно коэффициентов регрессии. Получившиеся коэффициенты являются оценками лассо. Для получения дополнительной информации о частотном представлении регрессии лассо см. [191].
В данном примере рассмотрите создание прогнозирующей линейной модели для уровня безработицы США. Вы хотите модель, которая делает вывод хорошо. Другими словами, вы хотите минимизировать сложность модели путем удаления всех избыточных предикторов и всех предикторов, которые являются некоррелироваными с уровнем безработицы.
Загрузите США макроэкономический набор данных Data_USEconModel.mat
.
load Data_USEconModel
Набор данных включает расписание MATLAB® DataTable
, который содержит 14 переменных, измеренных от 1 квартала 1947 до 1 квартала 2009; UNRATE
уровень безработицы США. Для получения дополнительной информации введите Description
в командной строке.
Постройте весь ряд на том же рисунке, но на отдельных подграфиках.
figure; for j = 1:size(DataTable,2) subplot(4,4,j) plot(DataTable.Time,DataTable{:,j}); title(DataTable.Properties.VariableNames(j)); end
Весь ряд кроме FEDFUNDS
, GS10
, TB3MS
, и UNRATE
кажись, иметь экспоненциальный тренд.
Применяйте логарифмическое преобразование к тем переменным, которые имеют экспоненциальный тренд.
hasexpotrend = ~ismember(DataTable.Properties.VariableNames,... ["FEDFUNDS" "GD10" "TB3MS" "UNRATE"]); DataTableLog = varfun(@log,DataTable,'InputVariables',... DataTable.Properties.VariableNames(hasexpotrend)); DataTableLog = [DataTableLog DataTable(:,DataTable.Properties.VariableNames(~hasexpotrend))];
DataTableLog
расписание как DataTable
, но те переменные с экспоненциальным трендом находятся на логарифмической шкале.
Коэффициенты, которые имеют относительно большие величины, имеют тенденцию доминировать над штрафом в целевой функции регрессии лассо. Поэтому важно, чтобы переменные имели подобную шкалу, когда вы реализуете регрессию лассо. Сравните шкалы переменных в DataTableLog
путем графического вывода их диаграмм на той же оси.
figure; boxplot(DataTableLog.Variables,'Labels',DataTableLog.Properties.VariableNames); h = gca; h.XTickLabelRotation = 45; title('Variable Box Plots');
Переменные имеют довольно подобные шкалы.
Чтобы определить, как хорошо модели временных рядов делают вывод, выполните эту процедуру:
Разделите данные в оценку и предскажите выборки.
Подбирайте модели к выборке оценки.
Используйте подобранные модели, чтобы предсказать ответы в горизонт прогноза.
Оцените среднеквадратическую ошибку прогноза (FMSE) для каждой модели.
Выберите модель с самым низким FMSE.
Создайте оценку и предскажите демонстрационные переменные для данных о предикторе и ответа. Задайте горизонт прогноза 4 лет (16 четвертей).
fh = 16; y = DataTableLog.UNRATE(1:(end - fh)); yF = DataTableLog.UNRATE((end - fh + 1):end); isresponse = DataTable.Properties.VariableNames == "UNRATE"; X = DataTableLog{1:(end - fh),~isresponse}; XF = DataTableLog{(end - fh + 1):end,~isresponse}; p = size(X,2); % Number of predictors predictornames = DataTableLog.Properties.VariableNames(~isresponse);
Подбирайте простую модель линейной регрессии к выборке оценки. Задайте имена переменных (имя переменной отклика должно быть последним элементом). Извлеките p-значения. Идентифицируйте незначительные коэффициенты при помощи 5%-го уровня значения.
SLRMdlFull = fitlm(X,y,'VarNames',DataTableLog.Properties.VariableNames)
slrPValue = SLRMdlFull.Coefficients.pValue;
isInSig = SLRMdlFull.CoefficientNames(slrPValue > 0.05)
SLRMdlFull = Linear regression model: UNRATE ~ [Linear formula with 14 terms in 13 predictors] Estimated Coefficients: Estimate SE tStat pValue ________ ________ _______ __________ (Intercept) 88.014 5.3229 16.535 2.6568e-37 log_COE 7.1111 2.3426 3.0356 0.0027764 log_CPIAUCSL -3.4032 2.4611 -1.3828 0.16853 log_GCE -5.63 1.1581 -4.8615 2.6245e-06 log_GDP 14.522 3.9406 3.6851 0.00030659 log_GDPDEF 11.926 2.9298 4.0704 7.1598e-05 log_GPDI -2.5939 0.54603 -4.7504 4.2792e-06 log_GS10 0.57467 0.29313 1.9605 0.051565 log_HOANBS -32.861 1.4507 -22.652 2.3116e-53 log_M1SL -3.3023 0.53185 -6.209 3.914e-09 log_M2SL -1.3845 1.0438 -1.3264 0.18647 log_PCEC -7.143 3.4302 -2.0824 0.038799 FEDFUNDS 0.044542 0.047747 0.93287 0.3522 TB3MS -0.1577 0.064421 -2.448 0.015375 Number of observations: 185, Error degrees of freedom: 171 Root Mean Squared Error: 0.312 R-squared: 0.957, Adjusted R-Squared: 0.954 F-statistic vs. constant model: 292, p-value = 2.26e-109 isInSig = 1x4 cell array {'log_CPIAUCSL'} {'log_GS10'} {'log_M2SL'} {'FEDFUNDS'}
SLRMdlFull
LinearModel
объект модели. P-значения предполагают что, на 5%-м уровне значения, CPIAUCSL
, GS10
, M2SL
, и FEDFUNDS
незначительные переменные.
Переоборудуйте линейную модель без незначительных переменных в данных о предикторе. Используя полные и упрощенные модели, предскажите уровень безработицы в горизонт прогноза, затем оцените FMSEs.
idxreduced = ~ismember(predictornames,isInSig); XReduced = X(:,idxreduced); SLRMdlReduced = fitlm(XReduced,y,'VarNames',[predictornames(idxreduced) {'UNRATE'}]); yFSLRF = predict(SLRMdlFull,XF); yFSLRR = predict(SLRMdlReduced,XF(:,idxreduced)); fmseSLRF = sqrt(mean((yF - yFSLRF).^2)) fmseSLRR = sqrt(mean((yF - yFSLRR).^2))
fmseSLRF = 0.6674 fmseSLRR = 0.6105
FMSE упрощенной модели меньше FMSE полной модели, которая предполагает, что упрощенная модель делает вывод лучше.
Подбирайте модель регрессии лассо к данным. Используйте путь к регуляризации по умолчанию. lasso
стандартизирует данные по умолчанию. Поскольку переменные находятся по подобным шкалам, не стандартизируйте их. Возвратите информацию о подгонках вдоль пути к регуляризации.
[LassoBetaEstimates,FitInfo] = lasso(X,y,'Standardize',false,... 'PredictorNames',predictornames);
По умолчанию, lasso
соответствует временам модели 100 регрессии лассо при помощи последовательности значений для. Поэтому LassoBetaEstimates
13 100 матрица оценок коэффициента регрессии. Строки соответствуют переменным предикторам в X
, и столбцы соответствуют значениям. FitInfo
структура, которая включает значения (FitInfo.Lambda
), среднеквадратическая ошибка для каждой подгонки (FitInfo.MSE
), и предполагаемые точки пересечения (FitInfo.Intercept
).
Вычислите FMSE каждой модели, возвращенной lasso
.
yFLasso = FitInfo.Intercept + XF*LassoBetaEstimates; fmseLasso = sqrt(mean((yF - yFLasso).^2,1));
Постройте величину коэффициентов регрессии относительно значения уменьшения.
hax = lassoPlot(LassoBetaEstimates,FitInfo); L1Vals = hax.Children.XData; yyaxis right h = plot(L1Vals,fmseLasso,'LineWidth',2,'LineStyle','--'); legend(h,'FMSE','Location','SW'); ylabel('FMSE'); title('Frequentist Lasso')
Модель с 7 предикторами (df = 7), кажется, балансирует минимальный FMSE и сложность модели хорошо. Получите коэффициенты, соответствующие модели, содержащей 7 предикторов и дающей к минимальному FMSE.
fmsebestlasso = min(fmseLasso(FitInfo.DF == 7)); idx = fmseLasso == fmsebestlasso; bestLasso = [FitInfo.Intercept(idx); LassoBetaEstimates(:,idx)]; table(bestLasso,'RowNames',["Intercept" predictornames])
ans = 14x1 table bestLasso _________ Intercept 61.154 log_COE 0.042061 log_CPIAUCSL 0 log_GCE 0 log_GDP 0 log_GDPDEF 8.524 log_GPDI 0 log_GS10 1.6957 log_HOANBS -18.937 log_M1SL -1.3365 log_M2SL 0.17948 log_PCEC 0 FEDFUNDS 0 TB3MS -0.14459
Частотный анализ лассо предполагает что переменные CPIAUCSL
, GCE
, GDP
, GPDI
, PCEC
, и FEDFUNDS
или незначительны или избыточны.
В представлении Bayesian регрессии лассо предшествующим распределением коэффициентов регрессии является Лаплас (удвойте экспоненциал), со средним значением 0 и шкалой, где фиксированный параметр уменьшения и. Для получения дополнительной информации смотрите lassoblm
.
Как с частотным представлением регрессии лассо, если вы увеличиваетесь, затем разреженность получившейся модели увеличивается монотонно. Однако различающееся частотное лассо, Байесово лассо имеет незначительные или избыточные содействующие режимы, которые не являются точно 0. Вместо этого оценки имеют апостериорное распределение и незначительны или избыточны, если область приблизительно 0 имеют высокую плотность.
Когда вы реализуете Байесовую регрессию лассо в MATLAB®, знать о нескольких различиях между Statistics and Machine Learning Toolbox™ функционируют lasso
и объект Econometrics Toolbox™ lassoblm
и его присоединенные функции.
lassoblm
часть объектной среды, тогда как lasso
функция. Объектная среда оптимизировала эконометрические рабочие процессы.
В отличие от lasso
, lassoblm
не стандартизирует данные о предикторе. Однако можно предоставить различные значения уменьшения для каждого коэффициента. Эта функция помогает обеспечить interpretability содействующих оценок.
lassoblm
применяет одно значение уменьшения к каждому коэффициенту; это не принимает путь к регуляризации как lasso
.
Поскольку lassoblm
среда подходит для выполнения Байесовой регрессии лассо для одного значения уменьшения на коэффициент, можно использовать цикл for, чтобы выполнить лассо по пути к регуляризации.
Создайте Байесовую регрессию лассо предшествующая модель при помощи bayeslm
. Задайте количество переменных предикторов и имен переменных. Отобразите значение уменьшения по умолчанию для каждого коэффициента, сохраненного в Lambda
свойство модели.
PriorMdl = bayeslm(p,'ModelType','lasso','VarNames',predictornames); table(PriorMdl.Lambda,'RowNames',PriorMdl.VarNames)
ans = 14x1 table Var1 ____ Intercept 0.01 log_COE 1 log_CPIAUCSL 1 log_GCE 1 log_GDP 1 log_GDPDEF 1 log_GPDI 1 log_GS10 1 log_HOANBS 1 log_M1SL 1 log_M2SL 1 log_PCEC 1 FEDFUNDS 1 TB3MS 1
PriorMdl
lassoblm
объект модели. lassoblm
приписывает уменьшение 1
для каждого коэффициента кроме точки пересечения, которая имеет уменьшение 0.01
. Эти значения по умолчанию не могут быть полезными в большинстве приложений; лучшая практика должна экспериментировать со многими значениями.
Считайте путь к регуляризации возвращенным lasso
. Раздуйте значения уменьшения на коэффициент, куда MSE лассо запущен, = 1 через количество значений уменьшения.
ismissing = any(isnan(X),2);
n = sum(~ismissing); % Effective sample size
lambda = FitInfo.Lambda*n./sqrt(FitInfo.MSE);
Считайте путь к регуляризации возвращенным lasso
. Цикл через значения уменьшения в каждой итерации:
Оцените апостериорные распределения коэффициентов регрессии и отклонения воздействия, учитывая уменьшение и данные. Поскольку шкалы предикторов близки, приписывают то же уменьшение каждому предиктору и приписывают уменьшение 0.01
к точке пересечения. Сохраните следующие средние значения и 95%-е вероятные интервалы.
Для графика лассо, если 95%-й вероятный интервал включает 0, то обнуленный соответствующее следующее среднее значение.
Предскажите в горизонт прогноза.
Оцените FMSE.
numlambda = numel(lambda); % Preallocate BayesLassoCoefficients = zeros(p+1,numlambda); BayesLassoCI95 = zeros(p+1,2,numlambda); fmseBayesLasso = zeros(numlambda,1); BLCPlot = zeros(p+1,numlambda); % Estimate and forecast rng(10); % For reproducibility for j = 1:numlambda PriorMdl.Lambda = lambda(j); [EstMdl,Summary] = estimate(PriorMdl,X,y,'Display',false); BayesLassoCoefficients(:,j) = Summary.Mean(1:(end - 1)); BLCPlot(:,j) = Summary.Mean(1:(end - 1)); BayesLassoCI95(:,:,j) = Summary.CI95(1:(end - 1),:); idx = BayesLassoCI95(:,2,j) > 0 & BayesLassoCI95(:,1,j) <= 0; BLCPlot(idx,j) = 0; yFBayesLasso = forecast(EstMdl,XF); fmseBayesLasso(j) = sqrt(mean((yF - yFBayesLasso).^2)); end
В каждой итерации, estimate
запускает сэмплер Гиббса к выборке от полных условных выражений (см. Аналитически Послушное Последующее поколение), и возвращает empiricalblm
модель EstMdl
, который содержит ничьи и сводную таблицу оценки Summary
. Можно задать параметры для сэмплера Гиббса, такие как количество ничьих или утончающейся схемы.
Хорошая практика должна диагностировать следующую выборку путем осмотра графиков трассировки. Однако, потому что 100 распределений чертились, этот пример доходы, не выполняя тот шаг.
Постройте следующие средние значения коэффициентов относительно нормированных штрафов L1 (сумма величин коэффициентов кроме точки пересечения). На том же графике, но в правильной оси y, строят FMSEs.
L1Vals = sum(abs(BLCPlot(2:end,:)),1)/max(sum(abs(BLCPlot(2:end,:)),1)); figure; plot(L1Vals,BLCPlot(2:end,:)) xlabel('L1'); ylabel('Coefficient Estimates'); yyaxis right h = plot(L1Vals,fmseBayesLasso,'LineWidth',2,'LineStyle','--'); legend(h,'FMSE','Location','SW'); ylabel('FMSE'); title('Bayesian Lasso')
Модель имеет тенденцию делать вывод лучше как нормированные увеличения штрафа L1 прошлые 0.1. Чтобы сбалансировать минимальный FMSE и сложность модели, выберите самую простую модель с FMSE, самым близким к 0,68.
idx = find(fmseBayesLasso > 0.68,1); fmsebestbayeslasso = fmseBayesLasso(idx); bestBayesLasso = BayesLassoCoefficients(:,idx); bestCI95 = BayesLassoCI95(:,:,idx); table(bestBayesLasso,bestCI95,'RowNames',["Intercept" predictornames])
ans = 14x2 table bestBayesLasso bestCI95 ______________ ______________________ Intercept 90.587 79.819 101.62 log_COE 6.5591 1.8093 11.239 log_CPIAUCSL -2.2971 -6.9019 1.7057 log_GCE -5.1707 -7.4902 -2.8583 log_GDP 9.8839 2.3848 17.672 log_GDPDEF 10.281 5.1677 15.936 log_GPDI -2.0973 -3.2168 -0.96728 log_GS10 0.82485 0.22748 1.4237 log_HOANBS -32.538 -35.589 -29.526 log_M1SL -3.0656 -4.1499 -2.0066 log_M2SL -1.1007 -3.1243 0.75844 log_PCEC -3.3342 -9.6496 1.8482 FEDFUNDS 0.043672 -0.056192 0.14254 TB3MS -0.15682 -0.29385 -0.022145
Один способ определить, незначительна ли переменная или избыточная, путем проверки, является ли 0 в его соответствующем коэффициенте 95%-м вероятным интервалом. Используя этот критерий, CPIAUCSL
, M2SL
, PCEC
, и FEDFUNDS
незначительны.
Отобразите все оценки в таблице для сравнения.
SLRR = zeros(p + 1,1); SLRR([true idxreduced]) = SLRMdlReduced.Coefficients.Estimate; table([SLRMdlFull.Coefficients.Estimate; fmseSLRR],... [SLRR; fmseSLRR],... [bestLasso; fmsebestlasso],... [bestBayesLasso; fmsebestbayeslasso],'VariableNames',... {'SLRFull' 'SLRReduced' 'Lasso' 'BayesLasso'},... 'RowNames',[PriorMdl.VarNames; 'MSE'])
ans = 15x4 table SLRFull SLRReduced Lasso BayesLasso ________ __________ ________ __________ Intercept 88.014 88.327 61.154 90.587 log_COE 7.1111 10.854 0.042061 6.5591 log_CPIAUCSL -3.4032 0 0 -2.2971 log_GCE -5.63 -6.1958 0 -5.1707 log_GDP 14.522 16.701 0 9.8839 log_GDPDEF 11.926 9.1106 8.524 10.281 log_GPDI -2.5939 -2.6963 0 -2.0973 log_GS10 0.57467 0 1.6957 0.82485 log_HOANBS -32.861 -33.782 -18.937 -32.538 log_M1SL -3.3023 -2.8099 -1.3365 -3.0656 log_M2SL -1.3845 0 0.17948 -1.1007 log_PCEC -7.143 -14.207 0 -3.3342 FEDFUNDS 0.044542 0 0 0.043672 TB3MS -0.1577 -0.078449 -0.14459 -0.15682 MSE 0.61048 0.61048 0.79425 0.69639
После того, как вы выбрали модель, повторно оцените его с помощью целого набора данных. Например, чтобы создать прогнозирующую Байесовую модель регрессии лассо, создайте предшествующую модель и задайте уменьшение, дающее к самой простой модели с минимальным FMSE, затем оцените его с помощью целого набора данных.
bestLambda = lambda(idx); PriorMdl = bayeslm(p,'ModelType','lasso','Lambda',bestLambda,... 'VarNames',predictornames); PosteriorMdl = estimate(PriorMdl,[X; XF],[y; yF]);
Method: lasso MCMC sampling with 10000 draws Number of observations: 201 Number of predictors: 14 | Mean Std CI95 Positive Distribution ----------------------------------------------------------------------------- Intercept | 85.9643 5.2710 [75.544, 96.407] 1.000 Empirical log_COE | 12.3574 2.1817 [ 8.001, 16.651] 1.000 Empirical log_CPIAUCSL | 0.1498 1.9150 [-3.733, 4.005] 0.525 Empirical log_GCE | -7.1850 1.0556 [-9.208, -5.101] 0.000 Empirical log_GDP | 11.8648 3.9955 [ 4.111, 19.640] 0.999 Empirical log_GDPDEF | 8.8777 2.4221 [ 4.033, 13.745] 1.000 Empirical log_GPDI | -2.5884 0.5294 [-3.628, -1.553] 0.000 Empirical log_GS10 | 0.6910 0.2577 [ 0.194, 1.197] 0.997 Empirical log_HOANBS | -32.3356 1.4941 [-35.276, -29.433] 0.000 Empirical log_M1SL | -2.2279 0.5043 [-3.202, -1.238] 0.000 Empirical log_M2SL | 0.3617 0.9123 [-1.438, 2.179] 0.652 Empirical log_PCEC | -11.3018 3.0353 [-17.318, -5.252] 0.000 Empirical FEDFUNDS | -0.0132 0.0490 [-0.109, 0.082] 0.392 Empirical TB3MS | -0.1128 0.0660 [-0.244, 0.016] 0.042 Empirical Sigma2 | 0.1186 0.0122 [ 0.097, 0.145] 1.000 Empirical
estimate
| simulate
| forecast