В этом примере показано, как оценить модель регрессии, содержащую компонент регрессии, и затем предсказать наблюдения от подобранной модели.
Предположим, что линейное соотношение между изменением в уровне безработицы и темпом роста номинального валового национального продукта (nGNP) представляет интерес. Предположим далее, что первым различием уровня безработицы является серия ARMA(1,1). Символически, и в форме пространства состояний, модель
где:
изменение в уровне безработицы во время t.
фиктивное состояние для MA (1) эффект.
наблюдаемое изменение в уровне безработицы, выкачиваемом темпом роста nGNP ().
серия Gaussian воздействий состояния, имеющих среднее значение 0 и стандартное отклонение 1.
серия Gaussian инноваций наблюдения, имеющих среднее значение 0 и стандартное отклонение .
Загрузите набор данных Нельсона-Плоссера, который содержит уровень безработицы и nGNP ряд, среди прочего.
load Data_NelsonPlosser
Предварительно обработайте данные путем взятия натурального логарифма nGNP ряда и первого различия каждого ряда. Кроме того, удалите стартовый NaN
значения от каждого ряда.
isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs gnpn = DataTable.GNPN(~isNaN); u = DataTable.UR(~isNaN); T = size(gnpn,1); % Sample size Z = [ones(T-1,1) diff(log(gnpn))]; y = diff(u);
Хотя этот пример удаляет отсутствующие значения, программное обеспечение может вместить ряд, содержащий отсутствующие значения в среде Фильтра Калмана.
Чтобы определить, как хорошо модель предсказывает наблюдения, удалите последние 10 наблюдений для сравнения.
numPeriods = 10; % Forecast horizon isY = y(1:end-numPeriods); % In-sample observations oosY = y(end-numPeriods+1:end); % Out-of-sample observations ISZ = Z(1:end-numPeriods,:); % In-sample predictors OOSZ = Z(end-numPeriods+1:end,:); % Out-of-sample predictors
Задайте содействующие матрицы.
A = [NaN NaN; 0 0]; B = [1; 1]; C = [1 0]; D = NaN;
Задайте модель в пространстве состояний с помощью ssm
.
Mdl = ssm(A,B,C,D);
Оцените параметры модели. Задайте компонент регрессии и его начальное значение для оптимизации с помощью 'Predictors'
и 'Beta0'
аргументы пары "имя-значение", соответственно. Ограничьте оценку ко всем положительным, вещественным числам. Для числовой устойчивости задайте Гессиан, когда программное обеспечение вычислит ковариационную матрицу параметра, с помощью 'CovMethod'
аргумент пары "имя-значение".
params0 = [0.3 0.2 0.1]; % Chosen arbitrarily [EstMdl,estParams] = estimate(Mdl,isY,params0,'Predictors',ISZ,... 'Beta0',[0.1 0.2],'lb',[-Inf,-Inf,0,-Inf,-Inf],'CovMethod','hessian');
Method: Maximum likelihood (fmincon) Sample size: 51 Logarithmic likelihood: -87.2409 Akaike info criterion: 184.482 Bayesian info criterion: 194.141 | Coeff Std Err t Stat Prob ---------------------------------------------------------- c(1) | -0.31780 0.19429 -1.63572 0.10190 c(2) | 1.21242 0.48882 2.48031 0.01313 c(3) | 0.45583 0.63931 0.71301 0.47584 y <- z(1) | 1.32407 0.26313 5.03201 0 y <- z(2) | -24.48733 1.90115 -12.88024 0 | | Final State Std Dev t Stat Prob x(1) | -0.38117 0.42842 -0.88971 0.37363 x(2) | 0.23402 0.66222 0.35339 0.72380
EstMdl
ssm
модель, и можно получить доступ к ее свойствам с помощью записи через точку.
Предскажите наблюдения по горизонту прогноза. EstMdl
не хранит набор данных, таким образом, необходимо передать его в соответствующих аргументах пары "имя-значение".
[fY,yMSE] = forecast(EstMdl,numPeriods,isY,'Predictors0',ISZ,... 'PredictorsF',OOSZ,'Beta',estParams(end-1:end));
fY
вектор 10 на 1, содержащий предсказанные наблюдения и yMSE
вектор 10 на 1, содержащий отклонения предсказанных наблюдений.
Получите 95% интервалов прогноза вальдового типа. Постройте предсказанные наблюдения с их истинными значениями и интервалами прогноза.
ForecastIntervals(:,1) = fY - 1.96*sqrt(yMSE); ForecastIntervals(:,2) = fY + 1.96*sqrt(yMSE); figure h = plot(dates(end-numPeriods-9:end-numPeriods),isY(end-9:end),'-k',... dates(end-numPeriods+1:end),oosY,'-k',... dates(end-numPeriods+1:end),fY,'--r',... dates(end-numPeriods+1:end),ForecastIntervals,':b',... dates(end-numPeriods:end-numPeriods+1),... [isY(end)*ones(3,1),[oosY(1);ForecastIntervals(1,:)']],':k',... 'LineWidth',2); xlabel('Period') ylabel('Change in the unemployment rate') legend(h([1,3,4]),{'Observations','Forecasted responses',... '95% forecast intervals'}) title('Observed and Forecasted Changes in the Unemployment Rate')
Эта модель, кажется, предсказывает изменения в уровне безработицы хорошо.
ssm
| estimate
| forecast
| refine