В этом примере показано, как преобразовать модель классификации нейронных сетей в Simulink™ к фиксированной точке с помощью Fixed-Point Tool и Lookup Table Optimizer. После преобразования можно сгенерировать код С с помощью Simulink Coder.
Используя Fixed-Point Tool, можно преобразовать проект от плавающей точки до фиксированной точки. Используйте Lookup Table Optimizer, чтобы сгенерировать эффективные памятью замены интерполяционной таблицы для неограниченных функций, таких как exp
и log2
. Используя эти инструменты, этот пример показывает, как преобразовать обученную модель классификации нейронных сетей с плавающей точкой, чтобы использовать встроено-эффективные типы данных с фиксированной точкой.
MNIST рукописный набор данных цифры является обычно используемым набором данных в области нейронных сетей. Для примера, показывающего простой способ создать 2D многоуровневую нейронную сеть с помощью этого набора данных, см. https://blogs.mathworks.com/loren/2015/08/04/artificial-neural-networks-for-beginners/
Загрузите данные и обучите сеть.
%Load Data tr = csvread('train.csv', 1, 0); % read train.csv sub = csvread('test.csv', 1, 0); % read test.csv % Prepare Data n = size(tr, 1); % number of samples in the dataset targets = tr(:,1); % 1st column is |label| targets(targets == 0) = 10; % use '10' to present '0' targetsd = dummyvar(targets); % convert label into a dummy variable inputs = tr(:,2:end); % the rest of columns are predictors inputs = inputs'; % transpose input targets = targets'; % transpose target targetsd = targetsd'; % transpose dummy variable rng(1); % for reproducibility c = cvpartition(n,'Holdout',n/3); % hold out 1/3 of the dataset Xtrain = inputs(:, training(c)); % 2/3 of the input for training Ytrain = targetsd(:, training(c)); % 2/3 of the target for training Xtest = inputs(:, test(c)); % 1/3 of the input for testing Ytest = targets(test(c)); % 1/3 of the target for testing Ytestd = targetsd(:, test(c)); % 1/3 of the dummy variable for testing % Train Network hiddenLayerSize = 100; net = patternnet(hiddenLayerSize); [net, tr] = train(net, Xtrain, Ytrain); view(net); outputs = net(Xtest); errors = gsubtract(Ytest, outputs); performance = perform(net, Ytest, outputs); figure, plotperform(tr);
Закройте представление сети.
nnet.guis.closeAllViews();
После обучения сети используйте gensim
функция от Deep Learning Toolbox™, чтобы сгенерировать модель Simulink.
sys_name = gensim(net, 'Name', 'mTrainedNN');
Модель сгенерирована gensim
функция содержит нейронную сеть с обученными весами и смещениями. Подготовьте обученную нейронную сеть к преобразованию в фиксированную точку путем включения логгирования сигнала при выходе сети и добавлении входных стимулов и блоков верификации. Модифицированной моделью является fxpdemo_mnist_classification
.
Откройте и смотрите модель.
model = 'fxpdemo_mnist_classification'; system_under_design = [model '/Pattern Recognition Neural Network']; baseline_output = [model '/yarr']; open_system(model);
Чтобы открыть Fixed-Point Tool, щелкните правой кнопкой по Функции, Соответствующей подсистеме Нейронной сети, и выберите Fixed-Point Tool
. В качестве альтернативы используйте интерфейс командной строки Fixed-Point Tool. Инструмент Фиксированной точки и его интерфейс командной строки помогают вам подготовить свою модель к преобразованию и преобразовать вашу систему в фиксированную точку. Можно использовать Fixed-Point Tool, чтобы собрать область значений и инструментирование переполнения объектов в модели через анализ области значений и симуляцию. В этом примере используйте интерфейс командной строки Fixed-Point Tool, чтобы преобразовать нейронную сеть в фиксированную точку.
converter = DataTypeWorkflow.Converter(system_under_design);
Симулируйте модель с инструментированием, чтобы собрать области значений. Включите инструментирование с помощью 'Range collection using double override'
ярлык. Сохраните имя запуска симуляции для использования на более поздних шагах.
converter.applySettingsFromShortcut('Range collection using double override');
collect_ranges = converter.CurrentRunName;
sim_out = converter.simulateSystem();
Постройте правильный уровень классификации перед преобразованием, чтобы установить базовое поведение.
plotConfusionMatrix(sim_out, baseline_output, system_under_design, 'Classification rate before conversion');
Fixed-Point Tool использует информацию об области значений, полученную посредством симуляции, чтобы предложить типы данных с фиксированной точкой для блоков в системе в соответствии с проектом. В этом примере, чтобы гарантировать, что инструменты предлагают подписанные типы данных для всех блоков в подсистеме, отключают ProposeSignedness
опция в ProposalSettings
объект.
ps = DataTypeWorkflow.ProposalSettings; converter.proposeDataTypes(collect_ranges, ps);
По умолчанию Fixed-Point Tool применяет все предложенные типы данных. Используйте applyDataTypes
метод, чтобы применить типы данных. Если вы хотите только применить подмножество предложений в использовании Fixed-Point Tool флажок Accept, чтобы задать предложения, что вы хотите применяться.
converter.applyDataTypes(collect_ranges);
Предложенные типы должны обработать все возможные входные параметры правильно. Установите модель симулировать использование недавно прикладных типов, симулировать модель и замечать, что точность регрессии нейронной сети остается то же самое после преобразования.
converter.applySettingsFromShortcut('Range collection with specified data types');
sim_out = converter.simulateSystem();
Постройте правильный уровень классификации модели фиксированной точки.
plotConfusionMatrix(sim_out, baseline_output, system_under_design, 'Classification rate after fixed-point conversion');
Для более эффективного кода замените функцию Активации Tanh в первом слое или с интерполяционной таблицей или с реализацией CORDIC. В этом примере используйте Lookup Table Optimizer, чтобы заставить интерполяционную таблицу заменять tanh
. В этом примере задайте EvenPow2Spacing
для интервала точки останова для более быстрой скорости выполнения.
block_path = [system_under_design '/Layer 1/tansig']; p = FunctionApproximation.Problem(block_path); p.Options.WordLengths = 16; p.Options.BreakpointSpecification = 'EvenPow2Spacing'; solution = p.solve; solution.replaceWithApproximate;
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) | | 0 | 64 | 0 | 2 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 1.000000e+00 | | 1 | 16416 | 1 | 1024 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 4.272461e-04 | | 2 | 8224 | 1 | 512 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 1.525879e-03 | Best Solution | ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) | | 2 | 8224 | 1 | 512 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 1.525879e-03 |
Выполните те же шаги, чтобы заменить exp
функция в softmax реализации во втором слое с интерполяционной таблицей.
block_path = [system_under_design '/Layer 2/softmax/Exp']; p = FunctionApproximation.Problem(block_path); p.Options.WordLengths = 16; p.Options.BreakpointSpecification = 'EvenPow2Spacing';
Чтобы получить оптимизированную интерполяционную таблицу, задайте конечные нижние и верхние границы для входных параметров.
p.InputLowerBounds = -40; p.InputUpperBounds = 0; solution = p.solve; solution.replaceWithApproximate;
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) | | 0 | 64 | 0 | 2 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 9.996643e-01 | | 1 | 2608 | 1 | 161 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 6.907394e-03 | | 2 | 1328 | 0 | 81 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 2.451896e-02 | Best Solution | ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) | | 1 | 2608 | 1 | 161 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 6.907394e-03 |
Проверьте точность модели после заменяющий функции на приближения интерполяционной таблицы.
converter.applySettingsFromShortcut(converter.ShortcutsForSelectedSystem{2});
sim_out = converter.simulateSystem;
plotConfusionMatrix(sim_out, baseline_output, system_under_design, 'Classification rate after function replacement');
Чтобы сгенерировать код С, щелкните правой кнопкой по Функции, Соответствующей подсистеме Нейронной сети, выберите C/C++ Code > Build Subsystem
. Нажмите кнопку Build, когда запрошено настраиваемые параметры.