В этом примере показано, как реализовать квадратный корень фиксированной точки с помощью интерполяционной таблицы. Интерполяционные таблицы генерируют эффективный код для встроенных устройств.
Чтобы гарантировать, что этот пример не изменяет ваши настройки или настройки, этот код хранит исходное состояние.
originalFormat = get(0,'format'); format long g originalWarningState = warning('off','fixed:fi:underflow'); originalFiprefState = get(fipref); reset(fipref)
Вы восстановите это состояние в конце примера.
Алгоритм квадратного корня получен в итоге здесь.
Объявите количество битов в байте, B
, как константа. В этом примере, B = 8
.
Используйте функциональный fi_normalize_unsigned_8_bit_byte()
, описанный в примере Нормируют Данные для Интерполяционных таблиц, чтобы нормировать вход u > 0
таким образом, что u = x*2^n
, 0.5 <= x < 2
, и n
является четным.
Извлеките верхний B
биты x
. Позвольте x_B
обозначьте верхний B
биты x
.
Сгенерируйте интерполяционную таблицу, SQRTLUT
, таким образом, что целочисленный i = x_B- 2^(B-2) + 1
используется в качестве индекса к SQRTLUT
так, чтобы sqrt(x_B)
может быть оценен путем поиска индекса sqrt(x_B) = SQRTLUT(i)
.
Используйте остаток, r = x - x_B
, интерпретированный как часть, чтобы линейно интерполировать между SQRTLUT(i)
и следующее значение в таблице SQRTLUT(i+1)
. Остаток, r
, создается путем извлечения более низкого w - B
биты x
, где w
обозначает wordlength x
. Это интерпретировано как часть при помощи функционального reinterpretcast()
.
Наконец, вычислите выход с помощью интерполяционной таблицы и линейной интерполяции:
sqrt(u) = sqrt(x*2^n)
= sqrt(x)*2^(n/2)
= (SQRTLUT(i) + r*(SQRTLUT(i+1) - SQRTLUT(i)))*2^(n/2)
Функциональный fi_sqrtlookup_8_bit_byte()
, заданный в конце этого примера, реализует этот алгоритм.
Используйте fi_sqrtlookup_8_bit_byte()
вычислить квадратный корень фиксированной точки с помощью интерполяционной таблицы. Сравните результат интерполяционной таблицы фиксированной точки с квадратным корнем, вычисленным с помощью sqrt
и двойная точность.
u = fi(linspace(0,128,1000),0,16,12); y = fi_sqrtlookup_8_bit_byte(u); y_expected = sqrt(double(u));
Постройте график результатов.
clf subplot(211) plot(u,y,u,y_expected) legend('Output','Expected output','Location','Best') subplot(212) plot(u,double(y)-y_expected,'r') legend('Error')
figure(gcf)
Восстановите исходное состояние.
set(0,'format',originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);
sqrt_lookup_table
Функциональное определениеФункциональный sqrt_lookup_table
загружает интерполяционную таблицу значений квадратного корня. Можно составить таблицу путем выполнения:
sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1));
function SQRTLUT = sqrt_lookup_table() B = 8; % Number of bits in a byte % sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1)) sqrt_table = [0.707106781186548 0.712609640686961 0.718070330817254 0.723489806424389 ... 0.728868986855663 0.734208757779421 0.739509972887452 0.744773455488312 ... 0.750000000000000 0.755190373349661 0.760345316287277 0.765465544619743 ... 0.770551750371122 0.775604602874429 0.780624749799800 0.785612818123533 ... 0.790569415042095 0.795495128834866 0.800390529679106 0.805256170420320 ... 0.810092587300983 0.814900300650331 0.819679815537750 0.824431622392057 ... 0.829156197588850 0.833854004007896 0.838525491562421 0.843171097702003 ... 0.847791247890659 0.852386356061616 0.856956825050130 0.861503047005639 ... 0.866025403784439 0.870524267324007 0.875000000000000 0.879452954966893 ... 0.883883476483184 0.888291900221993 0.892678553567856 0.897043755900458 ... 0.901387818865997 0.905711046636840 0.910013736160065 0.914296177395487 ... 0.918558653543692 0.922801441264588 0.927024810886958 0.931229026609459 ... 0.935414346693485 0.939581023648307 0.943729304408844 0.947859430506444 ... 0.951971638232989 0.956066158798647 0.960143218483576 0.964203038783845 ... 0.968245836551854 0.972271824131503 0.976281209488332 0.980274196334883 ... 0.984250984251476 0.988211768802619 0.992156741649222 0.996086090656827 ... 1.000000000000000 1.003898650263063 1.007782218537319 1.011650878514915 ... 1.015504800579495 1.019344151893756 1.023169096484056 1.026979795322186 ... 1.030776406404415 1.034559084827928 1.038327982864759 1.042083250033317 ... 1.045825033167594 1.049553476484167 1.053268721647045 1.056970907830485 ... 1.060660171779821 1.064336647870400 1.068000468164691 1.071651762467640 ... 1.075290658380328 1.078917281352004 1.082531754730548 1.086134199811423 ... 1.089724735885168 1.093303480283494 1.096870548424015 1.100426053853688 ... 1.103970108290981 1.107502821666834 1.111024302164449 1.114534656257938 ... 1.118033988749895 1.121522402807898 1.125000000000000 1.128466880329237 ... 1.131923142267177 1.135368882786559 1.138804197393037 1.142229180156067 ... 1.145643923738960 1.149048519428140 1.152443057161611 1.155827625556683 ... 1.159202311936963 1.162567202358642 1.165922381636102 1.169267933366857 ... 1.172603939955857 1.175930482639174 1.179247641507075 1.182555495526531 ... 1.185854122563142 1.189143599402528 1.192424001771182 1.195695404356812 ... 1.198957880828180 1.202211503854459 1.205456345124119 1.208692475363357 ... 1.211919964354082 1.215138880951474 1.218349293101120 1.221551267855754 ... 1.224744871391589 1.227930169024281 1.231107225224513 1.234276103633219 ... 1.237436867076458 1.240589577579950 1.243734296383275 1.246871083953750 ... 1.250000000000000 1.253121103485214 1.256234452640111 1.259340104975618 ... 1.262438117295260 1.265528545707287 1.268611445636527 1.271686871835988 ... 1.274754878398196 1.277815518766305 1.280868845744950 1.283914911510884 ... 1.286953767623375 1.289985465034393 1.293010054098575 1.296027584582983 ... 1.299038105676658 1.302041665999979 1.305038313613819 1.308028096028522 ... 1.311011060212689 1.313987252601790 1.316956719106592 1.319919505121430 ... 1.322875655532295 1.325825214724777 1.328768226591831 1.331704734541407 ... 1.334634781503914 1.337558409939543 1.340475661845451 1.343386578762792 ... 1.346291201783626 1.349189571557681 1.352081728298996 1.354967711792425 ... 1.357847561400027 1.360721316067327 1.363589014329464 1.366450694317215 ... 1.369306393762915 1.372156150006259 1.375000000000000 1.377837980315538 ... 1.380670127148408 1.383496476323666 1.386317063301177 1.389131923180804 ... 1.391941090707505 1.394744600276337 1.397542485937369 1.400334781400505 ... 1.403121520040228 1.405902734900249 1.408678458698081 1.411448723829527 ... 1.414213562373095]; % Cast to fixed point with the most accurate rounding method WL = 4*B; % Word length FL = 2*B; % Fraction length SQRTLUT = fi(sqrt_table,1,WL,FL,'RoundingMethod','Nearest'); % Set fimath for the most efficient math operations F = fimath('OverflowAction','Wrap',... 'RoundingMethod','Floor',... 'SumMode','KeepLSB',... 'SumWordLength',WL,... 'ProductMode','KeepLSB',... 'ProductWordLength',WL); SQRTLUT = setfimath(SQRTLUT,F); end
fi_sqrtlookup_8_bit_byte()
Функциональное определениеfunction y = fi_sqrtlookup_8_bit_byte(u) % Load the lookup table SQRTLUT = sqrt_lookup_table(); % Remove fimath from the input to insulate this function from math % settings declared outside this function. u = removefimath(u); % Declare the output y = coder.nullcopy(fi(zeros(size(u)),numerictype(SQRTLUT),fimath(SQRTLUT))); B = 8; % Number of bits in a byte w = u.WordLength; for k = 1:numel(u) assert(u(k)>=0,'Input must be non-negative.'); if u(k)==0 y(k)=0; else % Normalize the input such that u = x*2^n and 0.5 <= x < 2 [x,n] = fi_normalize_unsigned_8_bit_byte(u(k)); isodd = storedInteger(bitand(fi(1,1,8,0),fi(n))); x = bitsra(x,isodd); n = n + isodd; % Extract the high byte of x high_byte = storedInteger(bitsliceget(x,w,w-B+1)); % Convert the high byte into an index for SQRTLUT i = high_byte - 2^(B-2) + 1; % The upper byte was used for the index into SQRTLUT. % The remainder, r, interpreted as a fraction, is used to % linearly interpolate between points. T_unsigned_fraction = numerictype(0,w-B,w-B); r = reinterpretcast(bitsliceget(x,w-B,1),T_unsigned_fraction); y(k) = bitshift((SQRTLUT(i) + r*(SQRTLUT(i+1) - SQRTLUT(i))),... bitsra(n,1)); end end % Remove fimath from the output to insulate the caller from math settings % declared inside this function. y = removefimath(y); end