ivx

Оценка модели ARX с помощью инструментального переменного метода с произвольными инструментами

Синтаксис

sys = ivx(data,[na nb nk],x)
sys = ivx(data,[na nb nk],x,max_size)

Описание

sys = ivx(data,[na nb nk],x) оценивает полиномиальную модель ARX, sys, использование инструментального переменного метода с произвольными инструментами. Модель оценивается для данных временных рядов data. [na nb nk] задает порядки структуры ARX A и полиномов B и входа, чтобы вывести задержку, описанную в количестве отсчетов.

Модель ARX представлена как:

A(q)y(t)=B(q)u(tnk)+v(t)

sys = ivx(data,[na nb nk],x,max_size) задает максимальный размер матриц, сформированных во время оценки.

Входные параметры

data

Данные об оценке. Данные могут быть:

  • Время - или данные ввода - вывода частотного диапазона

  • Данные timeseries

  • Данные частотной характеристики

data должен быть iddata, idfrd, или frd Объект (Control System Toolbox).

При использовании данных частотной области количество выходных параметров должно быть 1.

[na nb nk]

Порядки модели ARX.

Для получения дополнительной информации о структуре модели ARX смотрите arx.

x

Инструментальная матрица переменной.

x матрица, содержащая произвольные инструменты для использования в инструментальном переменном методе.

x должен быть одного размера с выходными данными, data.y. Для данных мультиэксперимента задайте x как массив ячеек с одной записью для каждого эксперимента.

Используемые инструменты походят на вектор регрессии с y замененный x.

max_size

Максимальный матричный размер.

max_size задает максимальный размер любой матрицы, сформированной алгоритмом для оценки.

Задайте max_size как довольно большое положительное целое число.

Значение по умолчанию: 250000

Выходные аргументы

sys

Модель ARX, которая соответствует данным об оценке, возвратилась как дискретное время idpoly объект. Эта модель создается с помощью заданных порядков модели, задержек и опций оценки. ivx не возвращает предполагаемой информации о ковариации для sys.

Информация о результатах оценки и используемых опциях хранится в Report свойство модели. Report имеет следующие поля:

Сообщите о полеОписание
Status

Сводные данные состояния модели, которое указывает, была ли модель создана конструкцией или получена оценкой.

Method

Команда оценки используется.

InitialCondition

Обработка начальных условий во время оценки модели, возвращенной как одно из следующих значений:

  • 'zero' — Начальные условия были обнулены.

  • 'estimate' — Начальные условия были обработаны как независимые параметры оценки.

  • 'backcast' — Начальные условия были оценены с помощью лучшего метода наименьших квадратов.

Это поле особенно полезно, чтобы просмотреть, как начальные условия были обработаны когда InitialCondition опцией в наборе опции оценки является 'auto'.

Fit

Количественная оценка оценки, возвращенной как структура. Смотрите Функцию потерь и Метрики качества Модели для получения дополнительной информации об этих метриках качества. Структура имеет следующие поля:

Поле Описание
FitPercent

Мера по нормированной среднеквадратической ошибке (NRMSE) того, как хорошо ответ модели соответствует данным об оценке, описанным как процент fitpercent = 100 (1-NRMSE).

LossFcn

Значение функции потерь, когда оценка завершается.

MSE

Мера по среднеквадратической ошибке (MSE) того, как хорошо ответ модели соответствует данным об оценке.

FPE

Итоговая ошибка предсказания для модели.

AIC

Необработанная мера по Критериям информации о Akaike (AIC) качества модели.

AICc

Маленький объем выборки откорректировал AIC.

nAIC

Нормированный AIC.

BIC

Байесовы информационные критерии (BIC).

Parameters

Ориентировочные стоимости параметров модели.

OptionsUsed

Набор опции используется для оценки. Если никакие пользовательские опции не были сконфигурированы, это - набор опций по умолчанию. Смотрите arxOptions для получения дополнительной информации.

RandState

Состояние потока случайных чисел в начале оценки. Пустой, если рандомизация не использовалась во время оценки. Для получения дополнительной информации смотрите rng.

DataUsed

Атрибуты данных используются для оценки, возвращенной как структура со следующими полями.

Поле Описание
Name

Имя набора данных.

Type

Тип данных.

Length

Количество выборок данных.

Ts

Размер шага.

InterSample

Введите междемонстрационное поведение, возвращенное как одно из следующих значений:

  • 'zoh' — Нулевой порядок содержит, обеспечивает кусочно-постоянный входной сигнал между выборками.

  • 'foh' — Хранение первого порядка обеспечивает кусочно-линейный входной сигнал между выборками.

  • 'bl' — Ограниченное полосой поведение указывает, что входной сигнал непрерывного времени имеет нулевую силу выше частоты Найквиста.

InputOffset

Возместите удаленный из входных данных временного интервала во время оценки. Для нелинейных моделей это - [].

OutputOffset

Возместите удаленный из выходных данных временного интервала во время оценки. Для нелинейных моделей это - [].

Для получения дополнительной информации об использовании Report, см. Отчет Оценки.

Советы

  • Использование iv4 сначала для оценки IV, чтобы идентифицировать полиномиальные модели ARX, где инструменты x выбраны автоматически. Использование ivx для нестандартных ситуаций. Например, когда существует обратная связь, существующая в данных, или, когда другие инструменты нужно попробовать. Можно также использовать iv автоматически сгенерировать инструменты от определенных пользовательских заданных фильтров.

Ссылки

[1] Ljung, L. System Identification: Теория для Пользователя, страницы 222, Верхнего Сэддл-Ривер, NJ, PTR Prentice Hall, 1999.

Смотрите также

| | | | |

Представлено до R2006a
Для просмотра документации необходимо авторизоваться на сайте