Ориентированное на поле управление асинхронного двигателя Используя датчик скорости

Этот пример реализует метод ориентированного на поле управления (FOC), чтобы контролировать скорость трехфазного асинхронного двигателя AC (ACIM). Алгоритм FOC требует обратной связи скорости ротора, которая получена в этом примере при помощи квадратурного датчика энкодера. Для получения дополнительной информации о FOC, смотрите Ориентированное на поле управление (FOC).

Этот пример использует квадратурный датчик энкодера, чтобы измерить скорость ротора. Квадратурный датчик энкодера состоит из диска с двумя дорожками или каналами, которые закодированы 90 электрических несовпадающих по фазе градусов. Это создает два импульса (A и B), которые имеют разность фаз 90 градусов и импульса индекса (I). Поэтому диспетчер использует фазовое соотношение между A и B-каналами и переходом состояний канала, чтобы определить направление вращения двигателя.

Модель

Пример включает модель mcb_acim_foc_qep_f28379d.

Можно использовать эту модель для симуляции и генерации кода. Можно также использовать open_system команду, чтобы открыть модель Simulink®.

open_system('mcb_acim_foc_qep_f28379d.slx');

Для получения дополнительной информации на настройке поддерживаемого оборудования, смотрите, что Необходимый Раздел оборудования под Генерирует Код и Развертывает Модель в Целевой компьютер.

Необходимый MathWorks® Products

Симулировать модель:

  • Motor Control Blockset™

Сгенерировать код и развернуть модель:

  • Motor Control Blockset™

  • Embedded Coder®

  • Embedded Coder® Support Package для процессоров Instruments™ C2000™ Техаса

  • Fixed-Point Designer™ (необходимый только для генерации оптимизированного кода)

Необходимые условия

1. Получите параметры двигателя. Мы предоставляем параметрам двигателя по умолчанию модель Simulink®, которую можно заменить на значения или от моторной таблицы данных или от других источников.

2. Если вы получаете параметры двигателя из таблицы данных или других источников, обновляете параметры двигателя и инвертора в скрипте инициализации модели, сопоставленном с моделями Simulink®. Для инструкций смотрите Оценочные Усиления Управления от Параметров двигателя.

3. Скрипт инициализации также вычисляет выведенные параметры. Например, общий фактор утечки, расчетный поток, оцененный крутящий момент, статор и индуктивность ротора асинхронного двигателя.

Модель симулируется

Этот пример поддерживает симуляцию. Выполните эти шаги, чтобы симулировать модель.

1. Откройте модель, включенную с этим примером.

2. Нажмите работает на вкладке Simulation, чтобы симулировать модель.

3. Нажмите Data Inspector на вкладке Simulation, чтобы просмотреть и анализировать результаты симуляции.

Сгенерируйте код и разверните модель в целевой компьютер

Этот раздел сообщает вам о том, как сгенерировать код и запустить алгоритм FOC на целевом компьютере.

Этот пример использует хост и целевую модель. Модель хоста является пользовательским интерфейсом к плате оборудования контроллеров. Можно запустить модель хоста на хосте - компьютере. Необходимое условие, чтобы использовать модель хоста должно развернуть целевую модель в плату оборудования контроллеров. Модель хоста использует последовательную передачу, чтобы управлять целевой моделью Simulink® и запустить двигатель в управлении с обратной связью.

Необходимое оборудование

Этот пример поддерживает следующую аппаратную конфигурацию. Можно также использовать целевое имя модели, чтобы открыть модель для соответствующей аппаратной конфигурации от командной строки MATLAB®.

Для связей, связанных с предыдущей аппаратной конфигурацией, см. LAUNCHXL-F28069M и Настройки LAUNCHXL-F28379D.

Сгенерируйте код и запущенную модель на целевом компьютере

1. Симулируйте целевую модель и наблюдайте результаты симуляции.

2. Завершите аппаратные связи.

3. Модель автоматически вычисляет ADC (или ток) значения смещения. Чтобы отключить эту функциональность (включил по умолчанию), обновите значение 0 к переменной inverter.ADCOffsetCalibEnable в скрипте инициализации модели.

В качестве альтернативы можно вычислить значения смещения ADC и обновить их вручную в скриптах инициализации модели. Для инструкций смотрите Запуск 3-фазовые электродвигатели переменного тока в Регулировании без обратной связи и Калибруйте Смещение ADC.

4. Откройте целевую модель. Если вы хотите изменить настройки аппаратной конфигурации по умолчанию в модели, смотрите Параметры конфигурации Модели.

5. Загрузите пример программы к CPU2 LAUNCHXL-F28379D, например, программа, которая управляет синим LED CPU2, при помощи контакта GPIO31 (c28379D_cpu2_blink.slx), чтобы гарантировать, что CPU2 по ошибке не сконфигурирован, чтобы использовать периферийные устройства платы, предназначенные для CPU1.

6. Click Build, Deploy & Start на вкладке Hardware, чтобы развернуть целевую модель в оборудование.

7. Кликните по гиперссылке модели хоста в целевой модели, чтобы открыть связанную модель хоста. Можно также использовать open_system команду, чтобы открыть модель хоста.

open_system('mcb_acim_foc_host_model.slx');

Для получения дополнительной информации о последовательной передаче между хостом и целевыми моделями, смотрите Целевую Хостом Коммуникацию.

8. В маске блока Host Serial Setup модели хоста выберите имя Port.

9. Обновите значение Задающей скорости в модели хоста.

10. В разделе сигналов Отладки выберите сигнал, что вы хотите контролировать.

11. Нажмите работает на вкладке Simulation, чтобы запустить модель хоста.

12. Смените положение переключателя Start / Stop Motor к На начать запускать двигатель.

13. Наблюдайте сигналы отладки от подсистемы RX в осциллографе времени SelectedSignals модели хоста.

ПРИМЕЧАНИЕ: Этот пример зависит от положительной обратной связи скорости для положительного вращения векторов пробела. Если двигатель не запускается, попробуйте эти шаги, чтобы решить вопрос:

  • Попытайтесь обменяться любыми двумя моторными связями фазы.

Смотрите также

Для просмотра документации необходимо авторизоваться на сайте