Используйте длинные массивы на Spark Enabled кластер Hadoop

Создавая и Используя длинные таблицы

В этом примере показано, как изменить MATLAB® пример составления длинной таблицы, чтобы работать на Spark® активированный Hadoop® кластер. Можно использовать эту длинную таблицу, чтобы создать длинные массивы и вычислить статистические свойства. Можно разработать код локально и затем масштабировать, чтобы использовать в своих интересах возможности, предлагаемые Parallel Computing Toolbox™ и MATLAB Parallel Server™, не имея необходимость переписывать алгоритм. См. также Рабочий процесс Больших данных с использованием высоких массивов и хранилищ данных и Сконфигурируйте Кластер Hadoop (MATLAB Parallel Server)

Во-первых, необходимо установить переменные окружения и кластерные свойства, когда подходящий для определенного Spark включил кластерную конфигурацию Hadoop. Смотрите своего системного администратора для значений для этих и других свойств, необходимых для представления заданий к вашему кластеру.

setenv('HADOOP_HOME', '/path/to/hadoop/install')
setenv('SPARK_HOME', '/path/to/spark/install');
cluster = parallel.cluster.Hadoop;

% Optionally, if you want to control the exact number of workers:
cluster.SparkProperties('spark.executor.instances') = '16';

mapreducer(cluster);

Примечание

На шаге настройки вы используете mapreducer установить кластерную среду выполнения. На следующем шаге вы создаете длинный массив. Если вы изменяете или удаляете кластерную среду выполнения после создания длинного массива, то длинный массив недопустим, и необходимо воссоздать его.

Примечание

Если вы хотите разработать в сериале и не использовать локальных рабочих, введите следующую команду.

mapreducer(0);

После установки ваших переменных окружения и кластерных свойств, можно запуститься, пример длинной таблицы MATLAB на Spark включил кластер Hadoop вместо на локальной машине. Создайте datastore и преобразуйте его в длинную таблицу. MATLAB автоматически запускает задание Spark, чтобы выполнить последующие вычисления на длинной таблице.

ds = datastore('airlinesmall.csv');
varnames = {'ArrDelay', 'DepDelay'};
ds.SelectedVariableNames = varnames;
ds.TreatAsMissing = 'NA';

Составьте длинную таблицу tt от datastore.

tt = tall(ds)
Starting a Spark Job on the Hadoop cluster. This could take a few minutes ...done.

tt =

  M×2 tall table 

    ArrDelay    DepDelay
    ________    ________

     8          12      
     8           1      
    21          20      
    13          12      
     4          -1      
    59          63      
     3          -2      
    11          -1      
    :           :
    :           :

Отображение указывает что количество строк, M, еще не известен. M заполнитель, пока вычисление не завершается.

Извлеките задержку прибытия ArrDelay от длинной таблицы. Это действие создает новую переменную длинного массива, чтобы использовать в последующих вычислениях.

a = tt.ArrDelay;

Можно задать ряд операций на длинном массиве, которые не выполняются, пока вы не вызываете gather. Выполнение так позволяет вам обрабатывать в пакетном режиме команды, которые могут занять много времени. Как пример, вычислите среднее и стандартное отклонение задержки прибытия. Используйте эти значения, чтобы создать верхние и более низкие пороги для задержек, которые являются в 1 стандартном отклонении среднего значения.

m = mean(a,'omitnan');
s = std(a,'omitnan');
one_sigma_bounds = [m-s m m+s];

Использование gather вычислить one_sigma_bounds, и загрузите ответ в память.

sig1 = gather(one_sigma_bounds)
Evaluating tall expression using the Spark Cluster:
- Pass 1 of 1: Completed in 0.95 sec
Evaluation completed in 1.3 sec

sig1 =

  -23.4572    7.1201   37.6975

Можно задать несколько вводов и выводов к gather если вы хотите оценить несколько вещей целиком. Выполнение так быстрее, чем вызов gather отдельно на каждом длинном массиве. Например, вычислите минимальную и максимальную задержку прибытия.

[max_delay, min_delay] = gather(max(a),min(a))
max_delay =

        1014

min_delay =

   -64

Примечание

Эти примеры занимают больше времени, чтобы завершиться в первый раз, если MATLAB запускается на кластерных рабочих.

При использовании длинных массивов во включенном кластере Hadoop Spark вычислите ресурсы из кластера Hadoop, будет зарезервирован в течение времени жизни mapreducer среды выполнения. Чтобы очистить эти ресурсы, необходимо удалить mapreducer:

delete(gcmr);
В качестве альтернативы можно превратиться в различную среду выполнения, например:
mapreducer(0);

Смотрите также

| | | | |

Связанные примеры

Больше о