В этом примере показано, как сравнить новый Logistic
модель для пожизненного PD против модели "чемпиона".
Загрузите данные о портфеле, которые включают ссуду и макро-информацию.
load RetailCreditPanelData.mat
data = join(data,dataMacro);
disp(head(data))
ID ScoreGroup YOB Default Year GDP Market __ __________ ___ _______ ____ _____ ______ 1 Low Risk 1 0 1997 2.72 7.61 1 Low Risk 2 0 1998 3.57 26.24 1 Low Risk 3 0 1999 2.86 18.1 1 Low Risk 4 0 2000 2.43 3.19 1 Low Risk 5 0 2001 1.26 -10.51 1 Low Risk 6 0 2002 -0.59 -22.95 1 Low Risk 7 0 2003 0.63 2.78 1 Low Risk 8 0 2004 1.85 9.48
nIDs = max(data.ID); uniqueIDs = unique(data.ID); rng('default'); % for reproducibility c = cvpartition(nIDs,'HoldOut',0.4); TrainIDInd = training(c); TestIDInd = test(c); TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd)); TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
В данном примере соответствуйте, новая модель с помощью только выигрывают информацию о группе, но никакую информацию о возрасте. Во-первых, можно подтвердить эту модель автономным способом. Для получения дополнительной информации смотрите Основную Пожизненную Проверку допустимости модели PD.
Информация о возрасте важна в этом наборе данных. Новая модель не выполняет, а также модель чемпиона (который включает возраст, группу счета и макро-Вар).
Соответствуйте новому Logistic
модель с помощью fitLifetimePDModel
.
ModelType = "logistic"; pdModel = fitLifetimePDModel(data(TrainDataInd,:),ModelType,... 'ModelID','LogisticNoAge',... 'IDVar','ID',... 'LoanVars','ScoreGroup',... 'MacroVars',{'GDP','Market'},... 'ResponseVar','Default'); disp(pdModel)
Logistic with properties: ModelID: "LogisticNoAge" Description: "" Model: [1x1 classreg.regr.CompactGeneralizedLinearModel] IDVar: "ID" AgeVar: "" LoanVars: "ScoreGroup" MacroVars: ["GDP" "Market"] ResponseVar: "Default"
Сравнить новый Logistic
модель к модели чемпиона, вам нужен доступ к предсказаниям модели чемпиона. Сила чемпиона модели даже имеет различные предикторы, таким образом, отображение между используемыми данными и точными входными параметрами чемпиона сила модели требует промежуточного шага предварительной обработки. Этот пример принимает, что у вас есть инструмент черного ящика, чтобы получить предсказания из модели чемпиона.
Сравните производительность модели для обеих моделей с помощью modelDiscrimination
.
DataSetChoice = "Testing"; if DataSetChoice =="Training" Ind = TrainDataInd; else Ind = TestDataInd; end ChampionPD = getChampionModelPDs (данные (Ind, :)); [DiscMeasure, DiscData] = modelDiscrimination (pdModel, данные (Ind, :),'DataID', DataSetChoice,... 'ReferencePD', ChampionPD,'ReferenceID',"Champion"); disp (DiscMeasure)
AUROC _______ LogisticNoAge, Testing 0.66503 Champion, Testing 0.70018
disp(head(DiscData))
ModelID X Y T _______________ ________ ________ ________ "LogisticNoAge" 0 0 0.02287 "LogisticNoAge" 0.04673 0.090978 0.02287 "LogisticNoAge" 0.064656 0.14922 0.022711 "LogisticNoAge" 0.10982 0.22764 0.020553 "LogisticNoAge" 0.14421 0.311 0.018483 "LogisticNoAge" 0.19237 0.41454 0.01722 "LogisticNoAge" 0.23558 0.43738 0.014125 "LogisticNoAge" 0.27979 0.52037 0.012812
disp(tail(DiscData))
ModelID X Y T __________ _______ _______ __________ "Champion" 0.88743 0.98021 0.0032242 "Champion" 0.90293 0.98477 0.0025583 "Champion" 0.91884 0.98896 0.0023801 "Champion" 0.93303 0.99239 0.0018756 "Champion" 0.94995 0.99391 0.0017711 "Champion" 0.96705 0.99695 0.0016436 "Champion" 0.98295 0.99886 0.0012847 "Champion" 1 1 0.00086887
Используйте modelDiscriminationPlot
построить ROC.
modelDiscriminationPlot(pdModel,data(Ind,:),'DataID',DataSetChoice,... 'ReferencePD',ChampionPD,'ReferenceID',"Champion");
[DiscMeasure,DiscData] = modelDiscrimination(pdModel,data(Ind,:),'SegmentBy','YOB','DataID',DataSetChoice,... 'ReferencePD',ChampionPD,'ReferenceID',"Champion"); disp(DiscMeasure)
AUROC _______ LogisticNoAge, YOB=1, Testing 0.64879 Champion, YOB=1, Testing 0.64972 LogisticNoAge, YOB=2, Testing 0.65699 Champion, YOB=2, Testing 0.66496 LogisticNoAge, YOB=3, Testing 0.63508 Champion, YOB=3, Testing 0.64774 LogisticNoAge, YOB=4, Testing 0.62656 Champion, YOB=4, Testing 0.66204 LogisticNoAge, YOB=5, Testing 0.6205 Champion, YOB=5, Testing 0.65439 LogisticNoAge, YOB=6, Testing 0.61739 Champion, YOB=6, Testing 0.63156 LogisticNoAge, YOB=7, Testing 0.64016 Champion, YOB=7, Testing 0.63117 LogisticNoAge, YOB=8, Testing 0.63339 Champion, YOB=8, Testing 0.63339
disp(head(DiscData))
ModelID YOB X Y T _______________ ___ _______ _______ _________ "LogisticNoAge" 1 0 0 0.022711 "LogisticNoAge" 1 0.12062 0.22401 0.022711 "LogisticNoAge" 1 0.23459 0.41435 0.018483 "LogisticNoAge" 1 0.33329 0.59151 0.01722 "LogisticNoAge" 1 0.45578 0.69107 0.01151 "LogisticNoAge" 1 0.5683 0.77452 0.009347 "LogisticNoAge" 1 0.67031 0.84919 0.0087028 "LogisticNoAge" 1 0.78943 0.9063 0.0064814
disp(tail(DiscData))
ModelID YOB X Y T _______________ ___ _______ ______ __________ "LogisticNoAge" 8 0 0 0.014125 "LogisticNoAge" 8 0.31762 0.5625 0.014125 "LogisticNoAge" 8 0.65751 0.8125 0.0071273 "LogisticNoAge" 8 1 1 0.0040058 "Champion" 8 0 0 0.0040291 "Champion" 8 0.31762 0.5625 0.0040291 "Champion" 8 0.65751 0.8125 0.0017711 "Champion" 8 1 1 0.00086887
Сравните точность этих двух моделей с modelAccuracy
.
GroupingVar = "YOB"; [AccMeasure, AccData] = modelAccuracy (pdModel, данные (Ind, :), GroupingVar,'DataID', DataSetChoice,... 'ReferencePD', ChampionPD,'ReferenceID',"Champion"); disp (AccMeasure)
RMSE __________ LogisticNoAge, grouped by YOB, Testing 0.0031021 Champion, grouped by YOB, Testing 0.00046476
disp(head(AccData))
ModelID YOB PD __________ ___ _________ "Observed" 1 0.017636 "Observed" 2 0.013303 "Observed" 3 0.010846 "Observed" 4 0.010709 "Observed" 5 0.0093528 "Observed" 6 0.0060197 "Observed" 7 0.0034776 "Observed" 8 0.0012535
disp(tail(AccData))
ModelID YOB PD __________ ___ _________ "Champion" 1 0.017244 "Champion" 2 0.012999 "Champion" 3 0.011428 "Champion" 4 0.010693 "Champion" 5 0.0085574 "Champion" 6 0.005937 "Champion" 7 0.0035193 "Champion" 8 0.0021802
Используйте modelAccuracyPlot
визуализировать точность модели.
modelAccuracyPlot(pdModel,data(Ind,:),GroupingVar,'DataID',DataSetChoice,... 'ReferencePD',ChampionPD,'ReferenceID',"Champion");
[AccMeasure,AccData] = modelAccuracy(pdModel,data(Ind,:),["YOB","ScoreGroup"],'DataID',DataSetChoice,... 'ReferencePD',ChampionPD,'ReferenceID',"Champion"); disp(AccMeasure)
RMSE _________ LogisticNoAge, grouped by YOB, ScoreGroup, Testing 0.0036974 Champion, grouped by YOB, ScoreGroup, Testing 0.0010716
disp(head(AccData))
ModelID YOB ScoreGroup PD __________ ___ ___________ _________ "Observed" 1 High Risk 0.030877 "Observed" 1 Medium Risk 0.013541 "Observed" 1 Low Risk 0.0081449 "Observed" 2 High Risk 0.022838 "Observed" 2 Medium Risk 0.012376 "Observed" 2 Low Risk 0.0046482 "Observed" 3 High Risk 0.017651 "Observed" 3 Medium Risk 0.0092652
unstack(AccData,'PD','ModelID')
ans=24×5 table
YOB ScoreGroup Champion LogisticNoAge Observed
___ ___________ _________ _____________ _________
1 High Risk 0.028165 0.019641 0.030877
1 Medium Risk 0.014833 0.0099388 0.013541
1 Low Risk 0.008422 0.0055911 0.0081449
2 High Risk 0.02167 0.019337 0.022838
2 Medium Risk 0.011123 0.0098141 0.012376
2 Low Risk 0.0061856 0.0055194 0.0046482
3 High Risk 0.019285 0.020139 0.017651
3 Medium Risk 0.0098085 0.010179 0.0092652
3 Low Risk 0.0054096 0.0057356 0.005813
4 High Risk 0.018136 0.019175 0.018562
4 Medium Risk 0.0091921 0.0096563 0.0094929
4 Low Risk 0.0050562 0.0054292 0.004392
5 High Risk 0.014818 0.014806 0.016288
5 Medium Risk 0.0072853 0.007454 0.0080033
5 Low Risk 0.0039358 0.0041822 0.0041745
6 High Risk 0.01049 0.012153 0.0096889
⋮
Можно также сравнить две новых разрабатываемых модели.
pdModelTTC = fitLifetimePDModel(data(TrainDataInd,:),"probit",... 'ModelID','ProbitTTC',... 'AgeVar','YOB',... 'IDVar','ID',... 'LoanVars','ScoreGroup',... 'ResponseVar','Default',... 'Description',"TTC model, no macro variables, probit."); disp(pdModelTTC)
Probit with properties: ModelID: "ProbitTTC" Description: "TTC model, no macro variables, probit." Model: [1x1 classreg.regr.CompactGeneralizedLinearModel] IDVar: "ID" AgeVar: "YOB" LoanVars: "ScoreGroup" MacroVars: "" ResponseVar: "Default"
Сравните точность.
[AccMeasureTTC,AccDataTTC] = modelAccuracy(pdModelTTC,data(Ind,:),["YOB","ScoreGroup"],'DataID',DataSetChoice,... 'ReferencePD',predict(pdModel,data(Ind,:)),'ReferenceID',pdModel.ModelID); disp(AccMeasureTTC)
RMSE _________ ProbitTTC, grouped by YOB, ScoreGroup, Testing 0.0016726 LogisticNoAge, grouped by YOB, ScoreGroup, Testing 0.0036974
unstack(AccDataTTC,'PD','ModelID')
ans=24×5 table
YOB ScoreGroup LogisticNoAge Observed ProbitTTC
___ ___________ _____________ _________ _________
1 High Risk 0.019641 0.030877 0.028114
1 Medium Risk 0.0099388 0.013541 0.014865
1 Low Risk 0.0055911 0.0081449 0.0087364
2 High Risk 0.019337 0.022838 0.023239
2 Medium Risk 0.0098141 0.012376 0.012053
2 Low Risk 0.0055194 0.0046482 0.0069786
3 High Risk 0.020139 0.017651 0.019096
3 Medium Risk 0.010179 0.0092652 0.0097145
3 Low Risk 0.0057356 0.005813 0.0055406
4 High Risk 0.019175 0.018562 0.015599
4 Medium Risk 0.0096563 0.0094929 0.0077825
4 Low Risk 0.0054292 0.004392 0.0043722
5 High Risk 0.014806 0.016288 0.012666
5 Medium Risk 0.007454 0.0080033 0.0061971
5 Low Risk 0.0041822 0.0041745 0.0034292
6 High Risk 0.012153 0.0096889 0.010223
⋮
function PD = getChampionModelPDs(data) m = load('LifetimeChampionModel.mat'); PD = predict(m.pdModel,data); end
fitLifetimePDModel
| predict
| predictLifetime
| modelDiscrimination
| modelAccuracy
| Logistic
| Probit
| Cox