Эффективная оборудованием действительная пакетная матрица реализации решает Используя разложение QR

В этом примере показано, как реализовать эффективное оборудованием решение методом наименьших квадратов к матричному уравнению AX=B с действительным знаком с помощью блока Real Burst Matrix Solve Using QR Decomposition.

Задайте матричные размерности

Задайте количество строк в матрицах A и B, количество столбцов в матрице А и количество столбцов в матрице B.

m = 50;  % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Сгенерируйте случайные матрицы наименьших квадратов

В данном примере используйте функцию помощника realRandomLeastSquaresMatrices сгенерировать случайные матрицы A и B для задачи наименьших квадратов AX=B. Матрицы сгенерированы таким образом, что элементы массива и B между-1 и +1, и A имеет ранг r.

rng('default')
r = 3;   % Rank of A
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,r);

Выберите Fixed-Point Data Types

Используйте функцию помощника realQRMatrixSolveFixedpointTypes выбрать типы данных с фиксированной точкой для входных матриц A и B и вывести X таким образом, что существует низкая вероятность переполнения во время расчета.

max_abs_A = 1;      % Upper bound on max(abs(A(:))
max_abs_B = 1;      % Upper bound on max(abs(B(:))
precisionBits = 24; % Number of bits of precision

T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Откройте модель

model = 'RealBurstQRMatrixSolveModel';
open_system(model);

Подсистема Обработчика Данных в этой модели берет действительные матрицы A и B как входные параметры. ready порт инициировал Обработчик Данных. После отправки истинного validIn сигнал, перед ready может быть некоторая задержка установлен в ложь. Когда Обработчик Данных обнаруживает передний край ready сигнал, блок устанавливает validIn к истине и отправляет следующую строку A и B. Этот протокол позволяет данным быть отправленными каждый раз, когда передний край ready сигнал обнаруживается, гарантируя, что все данные обрабатываются.

Установите переменные в рабочем пространстве модели

Используйте функцию помощника setModelWorkspace добавить переменные, заданные выше к рабочему пространству модели. Эти переменные соответствуют параметрам блоков для блока Real Burst Matrix Solve Using QR Decomposition.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'numSamples',numSamples,'OutputType',OutputType);

Симулируйте модель

out = sim(model);

Создайте решение из выходных данных

Блок Real Burst Matrix Solve Using QR Decomposition выходные данные одна строка за один раз. Когда строка результата выводится, блок устанавливает validOut к истине. Строки X выводятся в порядке, они вычисляются, последняя строка сначала, таким образом, необходимо восстановить данные, чтобы интерпретировать результаты. Чтобы восстановить матрицу X от выходных данных, используйте функцию помощника matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);

Проверьте точность Выхода

Чтобы оценить точность блока Real Burst Matrix Solve Using QR Decomposition, вычислите относительную погрешность.

relative_error = norm(double(A*X - B))/norm(double(B)) %#ok<NOPTS>
relative_error =

   3.5192e-06