В этом примере показано, как запланировать два газовых электрических генератора оптимально, означая получать большую часть дохода минус стоимость. В то время как пример не совсем реалистичен, он действительно показывает, как учесть затраты, которые зависят от синхронизации решения.
Для подхода, основанного на проблеме к этой проблеме смотрите Оптимальную Отправку Производителей электроэнергии: основанный на проблеме.
Рынок электроэнергии имеет различные цены в разное время дня. Если у вас есть генераторы, можно использовать в своих интересах эту переменную оценку путем планирования генераторов, чтобы действовать, когда цены высоки. Предположим, что существует два генератора, которыми вы управляете. Каждый генератор имеет три уровня мощности (прочь, низко, и высоко). Каждый генератор имеет заданный уровень расхода топлива и выработки энергии на каждом уровне мощности. Конечно, расход топлива 0, когда генератор выключен.
Можно присвоить уровень мощности каждому генератору во время каждого получасового временного интервала в течение дня (24 часа, таким образом, 48 интервалов). На основе хронологических записей можно принять, что вы знаете доход на мегаватт-час (МВт·ч), что вы входите в каждый временной интервал. Данными для этого примера является от австралийского Оператора Энергетического рынка https://www.nemweb.com.au/REPORTS/CURRENT/ в середине 2013, и используется в их термины https://www.aemo.com.au/privacy-and-legal-notices/copyright-permissions.
load dispatchPrice; % Get poolPrice, which is the revenue per MWh bar(poolPrice,.5) xlim([.5,48.5]) xlabel('Price per MWh at each period')

Существует стоимость, чтобы запустить генератор после того, как это было выключено. Другое ограничение является максимальным топливным использованием в течение дня. Максимальное топливное ограничение состоит в том, потому что вы покупаете свое топливо день загодя, так может использовать только, что вы только купили.
Можно сформулировать проблему планирования как бинарную проблему целочисленного программирования можно следующим образом. Задайте индексирует iJ, и k, и двоичный файл, планируя векторный y как:
nPeriods = количество периодов времени, 48 в этом случае.
i = период времени, 1 <= i <= 48.
j = индекс генератора, 1 <= j <= 2 для этого примера.
y(i,j,k) = 1 когда период i, генератор j работает с уровнем мощности k. Позвольте малой мощности быть k = 1, и большая мощность быть k = 2. Генератор выключен когда sum_k y(i,j,k) = 0.
Необходимо определить, когда генератор запускается будучи прочь. Пусть
z(i,j) = 1 когда генератор j выключено в период i, но включен в период i + 1. z(i,j) = 0 в противном случае. Другими словами, z(i,j) = 1 когда sum_k y(i,j,k) = 0 и sum_k y(i+1,j,k) = 1.
Очевидно, вам нужен способ установить z автоматически на основе настроек y. Линейное ограничение ниже обрабатывает эту установку.
Вам также нужны параметры проблемы для затрат, уровней генерации для каждого генератора, уровней потребления генераторов и доступного топлива.
poolPrice(i) - Доход в долларах на МВт·ч в интервале i.
gen(j,k) - MW, сгенерированный генератором j на уровне мощности k.
fuel(j,k) - Топливо, используемое генератором j на уровне мощности k.
totalfuel - Топливо, доступное за один день.
startCost - Стойте в долларах, чтобы запустить генератор после того, как это будет выключено.
fuelPrice - Стойте за модуль топлива.
Вы получили poolPrice когда вы выполнили load dispatchPrice;. Установите другие параметры можно следующим образом.
fuelPrice = 3; totalfuel = 3.95e4; nPeriods = length(poolPrice); % 48 periods nGens = 2; % Two generators gen = [61,152;50,150]; % Generator 1 low = 61 MW, high = 152 MW fuel = [427,806;325,765]; % Fuel consumption for generator 2 is low = 325, high = 765 startCost = 1e4; % Cost to start a generator after it has been off
Исследуйте КПД этих двух генераторов в их двух рабочих точках.
efficiency = gen./fuel; % Calculate electricity per unit fuel use rr = efficiency'; % for plotting h = bar(rr); h(1).FaceColor = 'g'; h(2).FaceColor = 'c'; legend(h,'Generator 1','Generator 2','Location','NorthEastOutside') ax = gca; ax.XTick = [1,2]; ax.XTickLabel = {'Low','High'}; ylim([.1,.2]) ylabel('Efficiency')

Заметьте, что генератор 2 немного более эффективен, чем генератор 1 в его соответствующих рабочих точках (низко или высоко), но генератор 1 в его высокой рабочей точке более эффективен, чем генератор 2 в его низкой рабочей точке.
Чтобы настроить проблему, необходимо закодировать все проблемные данные и ограничения в форме что intlinprog решатель требует. У вас есть переменные y(i,j,k) это представляет решение проблемы и z(i,j) вспомогательные переменные для зарядки, чтобы включить генератор. y nPeriods-by-nGens-by-2 массив и z nPeriods-by-nGens массив.
Чтобы поместить эти переменные в один длинный вектор, задайте переменную неизвестных x:
x = [y(:);z(:)];
Для границ и линейных ограничений, является самым легким использовать естественную формулировку массивов y и z, затем преобразуйте ограничения в общую переменную решения, векторный x.
Вектор решения x состоит из бинарных переменных. Настройте границы lb и ub.
lby = zeros(nPeriods,nGens,2); % 0 for the y variables lbz = zeros(nPeriods,nGens); % 0 for the z variables lb = [lby(:);lbz(:)]; % Column vector lower bound ub = ones(size(lb)); % Binary variables have lower bound 0, upper bound 1
Для линейных ограничений A*x <= b, количество столбцов в A матрица должна совпасть с длиной x, который совпадает с длиной lb. Создать строки A из соответствующего размера создайте нулевые матрицы размеров y и z матрицы.
cleary = zeros(nPeriods,nGens,2); clearz = zeros(nPeriods,nGens);
Чтобы гарантировать, что уровень мощности имеет не больше, чем один компонент, равный 1, устанавливает линейное ограничение неравенства:
x(i,j,1) + x(i,j,2) <= 1
A = spalloc(nPeriods*nGens,length(lb),2*nPeriods*nGens); % nPeriods*nGens inequalities counter = 1; for ii = 1:nPeriods for jj = 1:nGens temp = cleary; temp(ii,jj,:) = 1; addrow = [temp(:);clearz(:)]'; A(counter,:) = sparse(addrow); counter = counter + 1; end end b = ones(nPeriods*nGens,1); % A*x <= b means no more than one of x(i,j,1) and x(i,j,2) are equal to 1
Производственные затраты на период являются стоимостью для топлива в течение того периода. Для генератора j работа с уровнем k, стоимостью является fuelPrice * fuel(j,k).
Чтобы гарантировать, что генераторы не используют слишком большого количества топлива, создайте ограничение неравенства на сумму топливного использования.
yFuel = lby; % Initialize fuel usage array yFuel(:,1,1) = fuel(1,1); % Fuel use of generator 1 in low setting yFuel(:,1,2) = fuel(1,2); % Fuel use of generator 1 in high setting yFuel(:,2,1) = fuel(2,1); % Fuel use of generator 2 in low setting yFuel(:,2,2) = fuel(2,2); % Fuel use of generator 2 in high setting addrow = [yFuel(:);clearz(:)]'; A = [A;sparse(addrow)]; b = [b;totalfuel]; % A*x <= b means the total fuel usage is <= totalfuel
Как можно заставить решатель устанавливать z переменные автоматически, чтобы совпадать с активными/от периодами, что y переменные представляют? Вспомните, что условием удовлетворить является z(i,j) = 1 точно, когда
sum_k y(i,j,k) = 0 и sum_k y(i+1,j,k) = 1.
Заметьте, что
sum_k ( - y(i,j,k) + y(i+1,j,k) ) > 0 точно, когда это необходимо, z(i,j) = 1.
Поэтому включайте линейные ограничения неравенства
sum_k ( - y(i,j,k) + y(i+1,j,k) ) - z(i,j) < = 0
в формулировке задачи, и включают z переменные в целевой функции стоятся. Включением z переменные в целевой функции, решатель пытается понизить значения z переменные, означая его пытаются установить их всех, равняются 0. Но для тех интервалов, когда генератор включает, линейное неравенство обеспечивает z(i,j) равняться 1.
Добавьте дополнительные строки в линейную матрицу ограничения неравенства A представлять эти новые неравенства. Перенеситесь примерно во время то, так, чтобы интервал 1 логически следовал за интервалом 48.
tempA = spalloc(nPeriods*nGens,length(lb),2*nPeriods*nGens); counter = 1; for ii = 1:nPeriods for jj = 1:nGens temp = cleary; tempy = clearz; temp(ii,jj,1) = -1; temp(ii,jj,2) = -1; if ii < nPeriods % Intervals 1 to 47 temp(ii+1,jj,1) = 1; temp(ii+1,jj,2) = 1; else % Interval 1 follows interval 48 temp(1,jj,1) = 1; temp(1,jj,2) = 1; end tempy(ii,jj) = -1; temp = [temp(:);tempy(:)]'; % Row vector for inclusion in tempA matrix tempA(counter,:) = sparse(temp); counter = counter + 1; end end A = [A;tempA]; b = [b;zeros(nPeriods*nGens,1)]; % A*x <= b sets z(i,j) = 1 at generator startup
Если у вас есть большая проблема, использование разреженных ограничительных матриц сохраняет память и может сэкономить вычислительное время также. Матрица ограничений A довольно разреженно:
filledfraction = nnz(A)/numel(A)
filledfraction = 0.0155
intlinprog принимает разреженные линейные ограничительные матрицы A и Aeq, но требует их соответствующих векторных ограничений b и beq быть полным.
Целевая функция включает затраты на топливо для выполнения генераторов, дохода от выполнения генераторов, и стоит за запуск генераторов.
generatorlevel = lby; % Generation in MW, start with 0s generatorlevel(:,1,1) = gen(1,1); % Fill in the levels generatorlevel(:,1,2) = gen(1,2); generatorlevel(:,2,1) = gen(2,1); generatorlevel(:,2,2) = gen(2,2);
Входящий доход = x.*generatorlevel.*poolPrice
revenue = generatorlevel; % Allocate revenue array for ii = 1:nPeriods revenue(ii,:,:) = poolPrice(ii)*generatorlevel(ii,:,:); end
Общая стоимость топлива = y.*yFuel*fuelPrice
fuelCost = yFuel*fuelPrice;
Стоимость запуска = z.*ones(size(z))*startCost
starts = (clearz + 1)*startCost;
starts = starts(:); % Generator startup cost vectorВекторный x = [y(:);z(:)]. Запишите общую прибыль в терминах x:
получите прибыль = Входящий доход - Общая стоимость топлива - стоимость Запуска
f = [revenue(:) - fuelCost(:);-starts]; % f is the objective function vectorЧтобы оставить свободное место, подавите итеративное отображение.
options = optimoptions('intlinprog','Display','final'); [x,fval,eflag,output] = intlinprog(-f,1:length(f),A,b,[],[],lb,ub,options);
Optimal solution found. Intlinprog stopped because the objective value is within a gap tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the default value).
Самый легкий способ исследовать решение делит вектор решения x на его два компонента, y и z.
ysolution = x(1:nPeriods*nGens*2); zsolution = x(nPeriods*nGens*2+1:end); ysolution = reshape(ysolution,[nPeriods,nGens,2]); zsolution = reshape(zsolution,[nPeriods,nGens]);
Постройте решение в зависимости от времени.
subplot(3,1,1) bar(ysolution(:,1,1)*gen(1,1)+ysolution(:,1,2)*gen(1,2),.5,'g') xlim([.5,48.5]) ylabel('MWh') title('Generator 1 optimal schedule','FontWeight','bold') subplot(3,1,2) bar(ysolution(:,2,1)*gen(1,1)+ysolution(:,2,2)*gen(1,2),.5,'c') title('Generator 2 optimal schedule','FontWeight','bold') xlim([.5,48.5]) ylabel('MWh') subplot(3,1,3) bar(poolPrice,.5) xlim([.5,48.5]) title('Energy price','FontWeight','bold') xlabel('Period') ylabel('$ / MWh')

Генератор 2 запуска дольше, чем генератор 1, который вы ожидали бы, потому что это более эффективно. Генератор 2 запуска на его мощном уровне каждый раз, когда это включено. Генератор 1 запуск в основном на его мощном уровне, но падениях вниз к малой мощности для одной единицы измерения времени. Каждые запуски генератора для одного непрерывного набора периодов ежедневно, поэтому несет только одни расходы запуска.
Проверяйте что z переменная 1 в течение периодов, когда генераторы запускаются.
starttimes = find(round(zsolution) == 1); % Use round for noninteger results
[theperiod,thegenerator] = ind2sub(size(zsolution),starttimes)theperiod = 2×1
23
16
thegenerator = 2×1
1
2
Периоды, когда генераторы начинают матч графики.
Если вы выбираете маленькое значение startCost, решение включает несколько периодов генерации.
startCost = 500; % Choose a lower penalty for starting the generators starts = (clearz + 1)*startCost; starts = starts(:); % Start cost vector fnew = [revenue(:) - fuelCost(:);-starts]; % New objective function [xnew,fvalnew,eflagnew,outputnew] = ... intlinprog(-fnew,1:length(fnew),A,b,[],[],lb,ub,options);
Optimal solution found. Intlinprog stopped because the objective value is within a gap tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the default value).
ysolutionnew = xnew(1:nPeriods*nGens*2); zsolutionnew = xnew(nPeriods*nGens*2+1:end); ysolutionnew = reshape(ysolutionnew,[nPeriods,nGens,2]); zsolutionnew = reshape(zsolutionnew,[nPeriods,nGens]); subplot(3,1,1) bar(ysolutionnew(:,1,1)*gen(1,1)+ysolutionnew(:,1,2)*gen(1,2),.5,'g') xlim([.5,48.5]) ylabel('MWh') title('Generator 1 optimal schedule','FontWeight','bold') subplot(3,1,2) bar(ysolutionnew(:,2,1)*gen(1,1)+ysolutionnew(:,2,2)*gen(1,2),.5,'c') title('Generator 2 optimal schedule','FontWeight','bold') xlim([.5,48.5]) ylabel('MWh') subplot(3,1,3) bar(poolPrice,.5) xlim([.5,48.5]) title('Energy price','FontWeight','bold') xlabel('Period') ylabel('$ / MWh')

starttimes = find(round(zsolutionnew) == 1); % Use round for noninteger results
[theperiod,thegenerator] = ind2sub(size(zsolution),starttimes)theperiod = 3×1
22
16
45
thegenerator = 3×1
1
2
2