Системный объект: phased.UCA
Пакет: поэтапный
Постройте диаграмму направленности антенной решетки UCA
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern(___,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern(___)
pattern(
строит шаблон направленности трехмерного массива (в dBi) для массива, заданного в sArray
,FREQ
)sArray
. Рабочая частота задана в FREQ
.
Интегрирование использовало, когда вычислительная направленность массивов имеет минимальную сетку выборки 0,1 градусов. Если диаграмма направленности антенной решетки имеет ширину луча, меньшую, чем это, значение направленности будет неточно.
pattern(
строит шаблон направленности массивов под заданным углом азимута.sArray
,FREQ
,AZ
)
pattern(
строит шаблон направленности массивов в заданном азимуте и углах возвышения.sArray
,FREQ
,AZ
,EL
)
pattern(___,
строит диаграмму направленности антенной решетки с дополнительными опциями, заданными одним или несколькими Name,Value
)Name,Value
парные аргументы.
возвращает диаграмму направленности антенной решетки в [PAT,AZ_ANG,EL_ANG]
= pattern(___)PAT
. AZ_ANG
выведите содержит координатные значения, соответствующие строкам PAT
. EL_ANG
выведите содержит координатные значения, соответствующие столбцам PAT
. Если 'CoordinateSystem'
параметр устанавливается на 'uv'
, затем AZ_ANG
содержит координаты U шаблона и EL_ANG
содержит координаты V шаблона. В противном случае они находятся в угловых единицах в градусах. модули UV являются безразмерными.
sArray
— Универсальный круговой массивУниверсальный круговой массив в виде phased.UCA
Системный объект.
Пример: sArray= phased.UCA;
FREQ
— Частота для вычислительной направленности и шаблоновЧастоты для вычислительной направленности и шаблонов в виде положительной скалярной величины или 1 L вектором-строкой с действительным знаком. Единицы частоты находятся в герц.
Для антенны, микрофона, или гидрофона гидролокатора или элемента проектора, FREQ
должен лечь в области значений значений, заданных FrequencyRange
или FrequencyVector
свойство элемента. В противном случае элемент не производит ответа, и направленность возвращена как –Inf
. Большинство элементов использует FrequencyRange
свойство за исключением phased.CustomAntennaElement
и phased.CustomMicrophoneElement
, которые используют FrequencyVector
свойство.
Для массива элементов, FREQ
должен лечь в частотном диапазоне элементов, которые составляют массив. В противном случае массив не производит ответа, и направленность возвращена как –Inf
.
Пример: [1e8 2e6]
Типы данных: double
AZ
— Углы азимута
(значение по умолчанию) | 1 N вектором-строкой с действительным знакомУглы азимута для вычислительной направленности и шаблона в виде 1 N вектором-строкой с действительным знаком, где N является количеством углов азимута. Угловые модули в градусах. Углы азимута должны находиться между-180 ° и 180 °.
Угол азимута является углом между x - ось и проекцией вектора направления на плоскость xy. Когда измерено от x - оси к y - ось, этот угол положителен.
Пример: [-45:2:45]
Типы данных: double
EL
— Углы возвышения
(значение по умолчанию) | 1 M вектором-строкой с действительным знакомУглы возвышения для вычислительной направленности и шаблона в виде 1 M вектором-строкой с действительным знаком, где M является количеством желаемых направлений вертикального изменения. Угловые модули в градусах. Угол возвышения должен находиться между-90 ° и 90 °.
Угол возвышения является углом между вектором направления и xy - плоскость. Угол возвышения положителен, когда измерено к z - ось.
Пример: [-75:1:70]
Типы данных: double
Задайте дополнительные разделенные запятой пары Name,Value
аргументы. Name
имя аргумента и Value
соответствующее значение. Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN
.
CoordinateSystem
— Графический вывод системы координат'polar'
(значение по умолчанию) | 'rectangular'
| 'uv'
Графический вывод системы координат шаблона в виде разделенной запятой пары, состоящей из 'CoordinateSystem'
и один из 'polar'
, 'rectangular'
, или 'uv'
. Когда 'CoordinateSystem'
установлен в 'polar'
или 'rectangular'
, AZ
и EL
аргументы задают азимут шаблона и вертикальное изменение, соответственно. AZ
значения должны находиться между-180 ° и 180 °. EL
значения должны находиться между-90 ° и 90 °. Если 'CoordinateSystem'
установлен в 'uv'
, AZ
и EL
затем задайте U и координаты V, соответственно. AZ
и EL
должен находиться между-1 и 1.
Пример: 'uv'
Типы данных: char
Type
— Отображенный тип шаблона'directivity'
(значение по умолчанию) | 'efield'
| 'power'
| 'powerdb'
Отображенный тип шаблона в виде разделенной запятой пары, состоящей из 'Type'
и один из
'directivity'
— шаблон направленности измеряется в dBi.
'efield'
— диаграмма направленности по напряжённости поля датчика или массива. Для акустических датчиков отображенный шаблон для скалярного звукового поля.
'power'
— диаграмма направленности мощности датчика или массива, заданного как квадрат диаграммы направленности по напряжённости поля.
'powerdb'
— диаграмма направленности мощности преобразована в дБ.
Пример: 'powerdb'
Типы данных: char
Orientation
— Ориентация массивов
. (значение по умолчанию) | вектор-столбец с действительным знаком 3 на 1Ориентация массивов в виде вектор-столбца с действительным знаком 3 на 1, содержащего углы поворота относительно x - y - и z - оси системы локальной координаты, соответственно.
Normalize
— Отображение нормирует шаблонtrue
(значение по умолчанию) | false
Отобразите нормированный шаблон в виде разделенной запятой пары, состоящей из 'Normalize
'и Boolean. Установите этот параметр на true
отобразить нормированный шаблон. Этот параметр не применяется, когда вы устанавливаете 'Type'
к 'directivity'
. Шаблоны направленности уже нормированы.
Типы данных: логический
ShowArray
— Просмотрите геометрию массивовfalse
(значение по умолчанию) | true
Просмотрите геометрию массивов наряду с 3D диаграммой направленности в виде false
или true
.
Типы данных: логический
ShowLocalCoordinates
— Покажите оси локальной координатыtrue
(значение по умолчанию) | false
Покажите оси локальной координаты в виде true
или false
.
Типы данных: логический
ShowColorbar
— Покажите шкалу палитрыtrue
(значение по умолчанию) | false
Покажите шкалу палитры в виде true
или false
.
Типы данных: логический
Parent
— Обработайте к осиОбработайте к осям, вдоль которых геометрия массивов отображена заданная как скаляр.
PlotStyle
— Графический вывод стиля'overlay'
(значение по умолчанию) | 'waterfall'
Графический вывод стиля в виде разделенной запятой пары, состоящей из 'Plotstyle'
и любой 'overlay'
или 'waterfall'
. Этот параметр применяется, когда вы задаете несколько частот в FREQ
в 2D графиках. Можно построить 2D графики путем установки одного из аргументов AZ
или EL
к скаляру.
Типы данных: char
Polarization
— Поляризованный полевой компонент'combined'
(значение по умолчанию) | 'H'
| 'V'
Поляризованный полевой компонент, чтобы отобразиться в виде разделенной запятой пары, состоящей из 'Поляризации' и 'combined'
H
, или 'V'
. Этот параметр применяется только, когда датчики способны к поляризации и когда 'Type'
параметр не устанавливается на 'directivity'
. Эта таблица показывает значение параметров отображения.
'Polarization' | Отображение |
---|---|
'combined' | Объединенный H и компоненты поляризации V |
'H' | Компонент поляризации H |
'V' | Компонент поляризации V |
Пример: 'V'
Типы данных: char
PropagationSpeed
— Скорость распространения сигналаСкорость распространения сигнала в виде разделенной запятой пары, состоящей из 'PropagationSpeed'
и положительная скалярная величина в метрах в секунду.
Пример: 'PropagationSpeed',physconst('LightSpeed')
Типы данных: double
Weights
— Веса массивовВеса массивов в виде разделенной запятой пары, состоящей из 'Weights
'и N-by-1 вектор-столбец с комплексным знаком или N-by-L матрица с комплексным знаком. Веса массивов применяются к элементам массива, чтобы произвести регулирование массивов, сужение или обоих. Размерность N является числом элементов в массиве. Размерность L является количеством частот, заданных FREQ
.
Размерность весов | Размерность FREQ | Цель |
---|---|---|
N-by-1 вектор-столбец с комплексным знаком | Скаляр или 1 L вектором-строкой | Применяет набор весов для одной частоты или для всех частот L. |
N-by-L матрица с комплексным знаком | 1 L вектором-строкой | Применяет каждый из столбцов L 'Weights' для соответствующей частоты в FREQ . |
Примечание
Используйте комплексные веса, чтобы регулировать ответ массивов к различным направлениям. Можно создать веса с помощью phased.SteeringVector
Системный объект или вы можете вычислить ваши собственные веса. В общем случае вы применяете Эрмитово спряжение перед использованием весов в любом Phased Array System Toolbox™ функциональный или Системный объект, таких как phased.Radiator
или phased.Collector
. Однако для directivity
, pattern
, patternAzimuth
, и patternElevation
методы любого Системного объекта массивов используют держащийся вектор без спряжения.
Пример: 'Weights',ones(N,M)
Типы данных: double
Поддержка комплексного числа: Да
AZ_ANG
— Углы азимутаEL_ANG
— Углы возвышенияСоздайте универсальный круговой массив (UCA) с 11 элементами, имеющий радиус на 1,5 м и действующий на уровне 500 МГц. Массив состоит из антенных элементов короткого диполя. Во-первых, отобразите вертикальную компоненту ответа в 45 азимутах степеней и 0 вертикальных изменениях степеней. Затем постройте направленность вертикального изменения и азимут.
antenna = phased.ShortDipoleAntennaElement(... 'FrequencyRange',[50e6,1000e6],... 'AxisDirection','Z'); array = phased.UCA('NumElements',11,'Radius',1.5,'Element',antenna); fc = 500e6; ang = [45;0]; resp = array(fc,ang); disp(resp.V)
-1.2247 -1.2247 -1.2247 -1.2247 -1.2247 -1.2247 -1.2247 -1.2247 -1.2247 -1.2247 -1.2247
Отобразите шаблон направленности азимута на уровне 500 МГц для углов азимута между-180 и 180 градусами.
c = physconst('LightSpeed'); pattern(array,fc,[-180:180],0,'Type','directivity','PropagationSpeed',c)
Отобразите шаблон направленности вертикального изменения на уровне 500 МГц для углов возвышения между-90 и 90 градусами.
pattern(array,fc,[0],[-90:90],'Type','directivity','PropagationSpeed',c)
Создайте антенную решетку UCA с 10 элементами, состоящую из антенных элементов косинуса. Отобразите 3-D диаграмму направленности мощности на пробеле UV.
sCos = phased.CosineAntennaElement('FrequencyRange',[100e6 1e9],... 'CosinePower',[2.5,2.5]); sUCA = phased.UCA('NumElements',10,... 'Radius',1.5,... 'Element',sCos); c = physconst('LightSpeed'); fc = 500e6; pattern(sUCA,fc,[-1:.01:1],[-1:.01:1],... 'CoordinateSystem','uv',... 'Type','powerdb',... 'PropagationSpeed',c)
Направленность описывает направленность диаграммы направленности элемента датчика или массива элементов датчика.
Более высокая направленность желаема, когда это необходимо, чтобы передать больше излучения в определенном направлении. Направленность является отношением переданной излучающей интенсивности в заданном направлении к излучающей интенсивности, переданной изотропным излучателем с той же общей переданной степенью
где U rad(θ,φ) является излучающей интенсивностью передатчика в направлении, общее количество (θ,φ) и P является общей степенью, переданной изотропным излучателем. Для элемента получения или массива, направленность измеряет чувствительность к излучению, прибывающему от определенного направления. Принцип взаимности показывает, что направленность элемента или массива, используемого для приема, равняется направленности того же элемента или массива, используемого для передачи. Когда преобразовано в децибелы, направленность обозначается как dBi. Для получения информации о направленности считайте примечания по Направленности Направленности и Массива Элемента.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.